mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-23 19:11:14 +01:00
148 lines
6.8 KiB
Python
148 lines
6.8 KiB
Python
import json
|
|
import hashlib
|
|
import datetime
|
|
import time
|
|
import copy
|
|
import cv2
|
|
import threading
|
|
import numpy as np
|
|
from collections import Counter, defaultdict
|
|
import itertools
|
|
import pyarrow.plasma as plasma
|
|
import matplotlib.pyplot as plt
|
|
from frigate.util import draw_box_with_label, PlasmaManager
|
|
from frigate.edgetpu import load_labels
|
|
|
|
PATH_TO_LABELS = '/labelmap.txt'
|
|
|
|
LABELS = load_labels(PATH_TO_LABELS)
|
|
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
|
|
|
COLOR_MAP = {}
|
|
for key, val in LABELS.items():
|
|
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
|
|
|
class TrackedObjectProcessor(threading.Thread):
|
|
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
|
|
threading.Thread.__init__(self)
|
|
self.config = config
|
|
self.client = client
|
|
self.topic_prefix = topic_prefix
|
|
self.tracked_objects_queue = tracked_objects_queue
|
|
self.camera_data = defaultdict(lambda: {
|
|
'best_objects': {},
|
|
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
|
'tracked_objects': {},
|
|
'current_frame': np.zeros((720,1280,3), np.uint8),
|
|
'current_frame_time': 0.0,
|
|
'object_id': None
|
|
})
|
|
self.plasma_client = PlasmaManager()
|
|
|
|
def get_best(self, camera, label):
|
|
if label in self.camera_data[camera]['best_objects']:
|
|
return self.camera_data[camera]['best_objects'][label]['frame']
|
|
else:
|
|
return None
|
|
|
|
def get_current_frame(self, camera):
|
|
return self.camera_data[camera]['current_frame']
|
|
|
|
def run(self):
|
|
while True:
|
|
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
|
|
|
|
config = self.config[camera]
|
|
best_objects = self.camera_data[camera]['best_objects']
|
|
current_object_status = self.camera_data[camera]['object_status']
|
|
self.camera_data[camera]['tracked_objects'] = tracked_objects
|
|
self.camera_data[camera]['current_frame_time'] = frame_time
|
|
|
|
###
|
|
# Draw tracked objects on the frame
|
|
###
|
|
current_frame = self.plasma_client.get(f"{camera}{frame_time}")
|
|
|
|
if not current_frame is plasma.ObjectNotAvailable:
|
|
# draw the bounding boxes on the frame
|
|
for obj in tracked_objects.values():
|
|
thickness = 2
|
|
color = COLOR_MAP[obj['label']]
|
|
|
|
if obj['frame_time'] != frame_time:
|
|
thickness = 1
|
|
color = (255,0,0)
|
|
|
|
# draw the bounding boxes on the frame
|
|
box = obj['box']
|
|
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
|
# draw the regions on the frame
|
|
region = obj['region']
|
|
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
|
|
|
if config['snapshots']['show_timestamp']:
|
|
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
|
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
|
|
###
|
|
# Set the current frame
|
|
###
|
|
self.camera_data[camera]['current_frame'] = current_frame
|
|
|
|
# delete the previous frame from the plasma store and update the object id
|
|
if not self.camera_data[camera]['object_id'] is None:
|
|
self.plasma_client.delete(self.camera_data[camera]['object_id'])
|
|
self.camera_data[camera]['object_id'] = f"{camera}{frame_time}"
|
|
|
|
###
|
|
# Maintain the highest scoring recent object and frame for each label
|
|
###
|
|
for obj in tracked_objects.values():
|
|
# if the object wasn't seen on the current frame, skip it
|
|
if obj['frame_time'] != frame_time:
|
|
continue
|
|
if obj['label'] in best_objects:
|
|
now = datetime.datetime.now().timestamp()
|
|
# if the object is a higher score than the current best score
|
|
# or the current object is more than 1 minute old, use the new object
|
|
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
|
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
|
best_objects[obj['label']] = obj
|
|
else:
|
|
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
|
best_objects[obj['label']] = obj
|
|
|
|
###
|
|
# Report over MQTT
|
|
###
|
|
# count objects with more than 2 entries in history by type
|
|
obj_counter = Counter()
|
|
for obj in tracked_objects.values():
|
|
if len(obj['history']) > 1:
|
|
obj_counter[obj['label']] += 1
|
|
|
|
# report on detected objects
|
|
for obj_name, count in obj_counter.items():
|
|
new_status = 'ON' if count > 0 else 'OFF'
|
|
if new_status != current_object_status[obj_name]:
|
|
current_object_status[obj_name] = new_status
|
|
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
|
|
# send the best snapshot over mqtt
|
|
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
|
ret, jpg = cv2.imencode('.jpg', best_frame)
|
|
if ret:
|
|
jpg_bytes = jpg.tobytes()
|
|
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
|
|
|
# expire any objects that are ON and no longer detected
|
|
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
|
for obj_name in expired_objects:
|
|
current_object_status[obj_name] = 'OFF'
|
|
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
|
|
# send updated snapshot over mqtt
|
|
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
|
ret, jpg = cv2.imencode('.jpg', best_frame)
|
|
if ret:
|
|
jpg_bytes = jpg.tobytes()
|
|
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|