mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* support for other yolov models and config checks * apply code formatting * Information about core mask and inference speed * update rknn postprocess and remove params * update model selection * Apply suggestions from code review Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
		
			
				
	
	
		
			169 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import os.path
 | |
| import urllib.request
 | |
| from typing import Literal
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| try:
 | |
|     from hide_warnings import hide_warnings
 | |
| except:  # noqa: E722
 | |
| 
 | |
|     def hide_warnings(func):
 | |
|         pass
 | |
| 
 | |
| 
 | |
| from pydantic import Field
 | |
| 
 | |
| from frigate.detectors.detection_api import DetectionApi
 | |
| from frigate.detectors.detector_config import BaseDetectorConfig
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| DETECTOR_KEY = "rknn"
 | |
| 
 | |
| yolov8_rknn_models = {
 | |
|     "default-yolov8n": "n",
 | |
|     "default-yolov8s": "s",
 | |
|     "default-yolov8m": "m",
 | |
|     "default-yolov8l": "l",
 | |
|     "default-yolov8x": "x",
 | |
| }
 | |
| 
 | |
| 
 | |
| class RknnDetectorConfig(BaseDetectorConfig):
 | |
|     type: Literal[DETECTOR_KEY]
 | |
|     core_mask: int = Field(default=0, ge=0, le=7, title="Core mask for NPU.")
 | |
| 
 | |
| 
 | |
| class Rknn(DetectionApi):
 | |
|     type_key = DETECTOR_KEY
 | |
| 
 | |
|     def __init__(self, config: RknnDetectorConfig):
 | |
|         self.model_path = config.model.path or "default-yolov8n"
 | |
|         self.core_mask = config.core_mask
 | |
|         self.height = config.model.height
 | |
|         self.width = config.model.width
 | |
| 
 | |
|         if self.model_path in yolov8_rknn_models:
 | |
|             if self.model_path == "default-yolov8n":
 | |
|                 self.model_path = "/models/yolov8n-320x320.rknn"
 | |
|             else:
 | |
|                 model_suffix = yolov8_rknn_models[self.model_path]
 | |
|                 self.model_path = (
 | |
|                     "/config/model_cache/rknn/yolov8{}-320x320.rknn".format(
 | |
|                         model_suffix
 | |
|                     )
 | |
|                 )
 | |
| 
 | |
|                 os.makedirs("/config/model_cache/rknn", exist_ok=True)
 | |
|                 if not os.path.isfile(self.model_path):
 | |
|                     logger.info("Downloading yolov8{} model.".format(model_suffix))
 | |
|                     urllib.request.urlretrieve(
 | |
|                         "https://github.com/MarcA711/rknn-models/releases/download/latest/yolov8{}-320x320.rknn".format(
 | |
|                             model_suffix
 | |
|                         ),
 | |
|                         self.model_path,
 | |
|                     )
 | |
| 
 | |
|             if (config.model.width != 320) or (config.model.height != 320):
 | |
|                 logger.error(
 | |
|                     "Make sure to set the model width and heigth to 320 in your config.yml."
 | |
|                 )
 | |
|                 raise Exception(
 | |
|                     "Make sure to set the model width and heigth to 320 in your config.yml."
 | |
|                 )
 | |
| 
 | |
|             if config.model.input_pixel_format != "bgr":
 | |
|                 logger.error(
 | |
|                     'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
 | |
|                 )
 | |
|                 raise Exception(
 | |
|                     'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
 | |
|                 )
 | |
| 
 | |
|             if config.model.input_tensor != "nhwc":
 | |
|                 logger.error(
 | |
|                     'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
 | |
|                 )
 | |
|                 raise Exception(
 | |
|                     'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
 | |
|                 )
 | |
| 
 | |
|         from rknnlite.api import RKNNLite
 | |
| 
 | |
|         self.rknn = RKNNLite(verbose=False)
 | |
|         if self.rknn.load_rknn(self.model_path) != 0:
 | |
|             logger.error("Error initializing rknn model.")
 | |
|         if self.rknn.init_runtime(core_mask=self.core_mask) != 0:
 | |
|             logger.error(
 | |
|                 "Error initializing rknn runtime. Do you run docker in privileged mode?"
 | |
|             )
 | |
| 
 | |
|     def __del__(self):
 | |
|         self.rknn.release()
 | |
| 
 | |
|     def postprocess(self, results):
 | |
|         """
 | |
|         Processes yolov8 output.
 | |
| 
 | |
|         Args:
 | |
|         results: array with shape: (1, 84, n, 1) where n depends on yolov8 model size (for 320x320 model n=2100)
 | |
| 
 | |
|         Returns:
 | |
|         detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max)
 | |
|         """
 | |
| 
 | |
|         results = np.transpose(results[0, :, :, 0])  # array shape (2100, 84)
 | |
|         scores = np.max(
 | |
|             results[:, 4:], axis=1
 | |
|         )  # array shape (2100,); max confidence of each row
 | |
| 
 | |
|         # remove lines with score scores < 0.4
 | |
|         filtered_arg = np.argwhere(scores > 0.4)
 | |
|         results = results[filtered_arg[:, 0]]
 | |
|         scores = scores[filtered_arg[:, 0]]
 | |
| 
 | |
|         num_detections = len(scores)
 | |
| 
 | |
|         if num_detections == 0:
 | |
|             return np.zeros((20, 6), np.float32)
 | |
| 
 | |
|         if num_detections > 20:
 | |
|             top_arg = np.argpartition(scores, -20)[-20:]
 | |
|             results = results[top_arg]
 | |
|             scores = scores[top_arg]
 | |
|             num_detections = 20
 | |
| 
 | |
|         classes = np.argmax(results[:, 4:], axis=1)
 | |
| 
 | |
|         boxes = np.transpose(
 | |
|             np.vstack(
 | |
|                 (
 | |
|                     results[:, 1] - 0.5 * results[:, 3],
 | |
|                     results[:, 0] - 0.5 * results[:, 2],
 | |
|                     results[:, 3] + 0.5 * results[:, 3],
 | |
|                     results[:, 2] + 0.5 * results[:, 2],
 | |
|                 )
 | |
|             )
 | |
|         )
 | |
| 
 | |
|         detections = np.zeros((20, 6), np.float32)
 | |
|         detections[:num_detections, 0] = classes
 | |
|         detections[:num_detections, 1] = scores
 | |
|         detections[:num_detections, 2:] = boxes
 | |
| 
 | |
|         return detections
 | |
| 
 | |
|     @hide_warnings
 | |
|     def inference(self, tensor_input):
 | |
|         return self.rknn.inference(inputs=tensor_input)
 | |
| 
 | |
|     def detect_raw(self, tensor_input):
 | |
|         output = self.inference(
 | |
|             [
 | |
|                 tensor_input,
 | |
|             ]
 | |
|         )
 | |
|         return self.postprocess(output[0])
 |