blakeblackshear.frigate/frigate/detectors/plugins/rknn.py
Marc Altmann 7522bb6fab
Add features to rknn detector (#8631)
* support for other yolov models and config checks

* apply code formatting

* Information about core mask and inference speed

* update rknn postprocess and remove params

* update model selection

* Apply suggestions from code review

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2023-11-17 01:08:41 +00:00

169 lines
5.3 KiB
Python

import logging
import os.path
import urllib.request
from typing import Literal
import numpy as np
try:
from hide_warnings import hide_warnings
except: # noqa: E722
def hide_warnings(func):
pass
from pydantic import Field
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
logger = logging.getLogger(__name__)
DETECTOR_KEY = "rknn"
yolov8_rknn_models = {
"default-yolov8n": "n",
"default-yolov8s": "s",
"default-yolov8m": "m",
"default-yolov8l": "l",
"default-yolov8x": "x",
}
class RknnDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
core_mask: int = Field(default=0, ge=0, le=7, title="Core mask for NPU.")
class Rknn(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, config: RknnDetectorConfig):
self.model_path = config.model.path or "default-yolov8n"
self.core_mask = config.core_mask
self.height = config.model.height
self.width = config.model.width
if self.model_path in yolov8_rknn_models:
if self.model_path == "default-yolov8n":
self.model_path = "/models/yolov8n-320x320.rknn"
else:
model_suffix = yolov8_rknn_models[self.model_path]
self.model_path = (
"/config/model_cache/rknn/yolov8{}-320x320.rknn".format(
model_suffix
)
)
os.makedirs("/config/model_cache/rknn", exist_ok=True)
if not os.path.isfile(self.model_path):
logger.info("Downloading yolov8{} model.".format(model_suffix))
urllib.request.urlretrieve(
"https://github.com/MarcA711/rknn-models/releases/download/latest/yolov8{}-320x320.rknn".format(
model_suffix
),
self.model_path,
)
if (config.model.width != 320) or (config.model.height != 320):
logger.error(
"Make sure to set the model width and heigth to 320 in your config.yml."
)
raise Exception(
"Make sure to set the model width and heigth to 320 in your config.yml."
)
if config.model.input_pixel_format != "bgr":
logger.error(
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
)
raise Exception(
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
)
if config.model.input_tensor != "nhwc":
logger.error(
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
)
raise Exception(
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
)
from rknnlite.api import RKNNLite
self.rknn = RKNNLite(verbose=False)
if self.rknn.load_rknn(self.model_path) != 0:
logger.error("Error initializing rknn model.")
if self.rknn.init_runtime(core_mask=self.core_mask) != 0:
logger.error(
"Error initializing rknn runtime. Do you run docker in privileged mode?"
)
def __del__(self):
self.rknn.release()
def postprocess(self, results):
"""
Processes yolov8 output.
Args:
results: array with shape: (1, 84, n, 1) where n depends on yolov8 model size (for 320x320 model n=2100)
Returns:
detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max)
"""
results = np.transpose(results[0, :, :, 0]) # array shape (2100, 84)
scores = np.max(
results[:, 4:], axis=1
) # array shape (2100,); max confidence of each row
# remove lines with score scores < 0.4
filtered_arg = np.argwhere(scores > 0.4)
results = results[filtered_arg[:, 0]]
scores = scores[filtered_arg[:, 0]]
num_detections = len(scores)
if num_detections == 0:
return np.zeros((20, 6), np.float32)
if num_detections > 20:
top_arg = np.argpartition(scores, -20)[-20:]
results = results[top_arg]
scores = scores[top_arg]
num_detections = 20
classes = np.argmax(results[:, 4:], axis=1)
boxes = np.transpose(
np.vstack(
(
results[:, 1] - 0.5 * results[:, 3],
results[:, 0] - 0.5 * results[:, 2],
results[:, 3] + 0.5 * results[:, 3],
results[:, 2] + 0.5 * results[:, 2],
)
)
)
detections = np.zeros((20, 6), np.float32)
detections[:num_detections, 0] = classes
detections[:num_detections, 1] = scores
detections[:num_detections, 2:] = boxes
return detections
@hide_warnings
def inference(self, tensor_input):
return self.rknn.inference(inputs=tensor_input)
def detect_raw(self, tensor_input):
output = self.inference(
[
tensor_input,
]
)
return self.postprocess(output[0])