mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* recordings data pub/sub * function to process recording stream frames * model runner * lpr model runner * refactor to mixin class and use model runner * separate out realtime and post processors * move model and mixin folders * basic postprocessor * clean up * docs * postprocessing logic * clean up * return none if recordings are disabled * run postprocessor handle_requests too * tweak expansion * add put endpoint * postprocessor tweaks with endpoint
		
			
				
	
	
		
			32 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			32 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from frigate.embeddings.onnx.lpr_embedding import (
 | 
						|
    LicensePlateDetector,
 | 
						|
    PaddleOCRClassification,
 | 
						|
    PaddleOCRDetection,
 | 
						|
    PaddleOCRRecognition,
 | 
						|
)
 | 
						|
 | 
						|
from ...types import DataProcessorModelRunner
 | 
						|
 | 
						|
 | 
						|
class LicensePlateModelRunner(DataProcessorModelRunner):
 | 
						|
    def __init__(self, requestor, device: str = "CPU", model_size: str = "large"):
 | 
						|
        super().__init__(requestor, device, model_size)
 | 
						|
        self.detection_model = PaddleOCRDetection(
 | 
						|
            model_size=model_size, requestor=requestor, device=device
 | 
						|
        )
 | 
						|
        self.classification_model = PaddleOCRClassification(
 | 
						|
            model_size=model_size, requestor=requestor, device=device
 | 
						|
        )
 | 
						|
        self.recognition_model = PaddleOCRRecognition(
 | 
						|
            model_size=model_size, requestor=requestor, device=device
 | 
						|
        )
 | 
						|
        self.yolov9_detection_model = LicensePlateDetector(
 | 
						|
            model_size=model_size, requestor=requestor, device=device
 | 
						|
        )
 | 
						|
 | 
						|
        # Load all models once
 | 
						|
        self.detection_model._load_model_and_utils()
 | 
						|
        self.classification_model._load_model_and_utils()
 | 
						|
        self.recognition_model._load_model_and_utils()
 | 
						|
        self.yolov9_detection_model._load_model_and_utils()
 |