blakeblackshear.frigate/frigate/config/classification.py
Josh Hawkins 3491e2f6df docs
2025-03-21 11:29:20 -05:00

141 lines
4.5 KiB
Python

from enum import Enum
from typing import Dict, List, Optional
from pydantic import ConfigDict, Field
from .base import FrigateBaseModel
__all__ = [
"CameraFaceRecognitionConfig",
"CameraLicensePlateRecognitionConfig",
"FaceRecognitionConfig",
"SemanticSearchConfig",
"LicensePlateRecognitionConfig",
]
class SemanticSearchModelEnum(str, Enum):
jinav1 = "jinav1"
jinav2 = "jinav2"
class BirdClassificationConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable bird classification.")
threshold: float = Field(
default=0.9,
title="Minimum classification score required to be considered a match.",
gt=0.0,
le=1.0,
)
class ClassificationConfig(FrigateBaseModel):
bird: BirdClassificationConfig = Field(
default_factory=BirdClassificationConfig, title="Bird classification config."
)
class SemanticSearchConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable semantic search.")
reindex: Optional[bool] = Field(
default=False, title="Reindex all tracked objects on startup."
)
model: Optional[SemanticSearchModelEnum] = Field(
default=SemanticSearchModelEnum.jinav1,
title="The CLIP model to use for semantic search.",
)
model_size: str = Field(
default="small", title="The size of the embeddings model used."
)
class FaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
min_score: float = Field(
title="Minimum face distance score required to save the attempt.",
default=0.8,
gt=0.0,
le=1.0,
)
detection_threshold: float = Field(
default=0.7,
title="Minimum face detection score required to be considered a face.",
gt=0.0,
le=1.0,
)
recognition_threshold: float = Field(
default=0.9,
title="Minimum face distance score required to be considered a match.",
gt=0.0,
le=1.0,
)
min_area: int = Field(
default=500, title="Min area of face box to consider running face recognition."
)
save_attempts: int = Field(
default=100, ge=0, title="Number of face attempts to save in the train tab."
)
blur_confidence_filter: bool = Field(
default=True, title="Apply blur quality filter to face confidence."
)
class CameraFaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
min_area: int = Field(
default=500, title="Min area of face box to consider running face recognition."
)
model_config = ConfigDict(extra="ignore", protected_namespaces=())
class LicensePlateRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable license plate recognition.")
detection_threshold: float = Field(
default=0.7,
title="License plate object confidence score required to begin running recognition.",
gt=0.0,
le=1.0,
)
min_area: int = Field(
default=1000,
title="Minimum area of license plate to begin running recognition.",
)
recognition_threshold: float = Field(
default=0.9,
title="Recognition confidence score required to add the plate to the object as a sub label.",
gt=0.0,
le=1.0,
)
min_plate_length: int = Field(
default=4,
title="Minimum number of characters a license plate must have to be added to the object as a sub label.",
)
format: Optional[str] = Field(
default=None,
title="Regular expression for the expected format of license plate.",
)
match_distance: int = Field(
default=1,
title="Allow this number of missing/incorrect characters to still cause a detected plate to match a known plate.",
ge=0,
)
known_plates: Optional[Dict[str, List[str]]] = Field(
default={}, title="Known plates to track (strings or regular expressions)."
)
class CameraLicensePlateRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable license plate recognition.")
expire_time: int = Field(
default=3,
title="Expire plates not seen after number of seconds (for dedicated LPR cameras only).",
gt=0,
)
min_area: int = Field(
default=1000,
title="Minimum area of license plate to begin running recognition.",
)
model_config = ConfigDict(extra="ignore", protected_namespaces=())