mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			58 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
from abc import ABC, abstractmethod
 | 
						|
from typing import List
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
class DetectionApi(ABC):
 | 
						|
    type_key: str
 | 
						|
    supported_models: List[ModelTypeEnum]
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __init__(self, detector_config: BaseDetectorConfig):
 | 
						|
        self.detector_config = detector_config
 | 
						|
        self.thresh = 0.4
 | 
						|
        self.height = detector_config.model.height
 | 
						|
        self.width = detector_config.model.width
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def detect_raw(self, tensor_input):
 | 
						|
        pass
 | 
						|
 | 
						|
    def calculate_grids_strides(self, expanded=True) -> None:
 | 
						|
        grids = []
 | 
						|
        expanded_strides = []
 | 
						|
 | 
						|
        # decode and orient predictions
 | 
						|
        strides = [8, 16, 32]
 | 
						|
        hsizes = [self.height // stride for stride in strides]
 | 
						|
        wsizes = [self.width // stride for stride in strides]
 | 
						|
 | 
						|
        for hsize, wsize, stride in zip(hsizes, wsizes, strides):
 | 
						|
            xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
 | 
						|
 | 
						|
            if expanded:
 | 
						|
                grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
 | 
						|
                grids.append(grid)
 | 
						|
                shape = grid.shape[:2]
 | 
						|
                expanded_strides.append(np.full((*shape, 1), stride))
 | 
						|
            else:
 | 
						|
                xv = xv.reshape(1, 1, hsize, wsize)
 | 
						|
                yv = yv.reshape(1, 1, hsize, wsize)
 | 
						|
                grids.extend(np.concatenate((xv, yv), axis=1).tolist())
 | 
						|
                expanded_strides.extend(
 | 
						|
                    np.array([stride, stride]).reshape(1, 2, 1, 1).tolist()
 | 
						|
                )
 | 
						|
 | 
						|
        if expanded:
 | 
						|
            self.grids = np.concatenate(grids, 1)
 | 
						|
            self.expanded_strides = np.concatenate(expanded_strides, 1)
 | 
						|
        else:
 | 
						|
            self.grids = grids
 | 
						|
            self.expanded_strides = expanded_strides
 |