mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-07 00:06:57 +01:00
151 lines
4.9 KiB
Python
151 lines
4.9 KiB
Python
"""Model Utils"""
|
|
|
|
import logging
|
|
import os
|
|
from typing import Any
|
|
|
|
import onnxruntime as ort
|
|
|
|
try:
|
|
import openvino as ov
|
|
except ImportError:
|
|
# openvino is not included
|
|
pass
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_ort_providers(
|
|
force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False
|
|
) -> tuple[list[str], list[dict[str, any]]]:
|
|
if force_cpu:
|
|
return (
|
|
["CPUExecutionProvider"],
|
|
[
|
|
{
|
|
"enable_cpu_mem_arena": False,
|
|
}
|
|
],
|
|
)
|
|
|
|
providers = []
|
|
options = []
|
|
|
|
for provider in ort.get_available_providers():
|
|
if provider == "CUDAExecutionProvider":
|
|
device_id = 0 if not device.isdigit() else int(device)
|
|
providers.append(provider)
|
|
options.append(
|
|
{
|
|
"arena_extend_strategy": "kSameAsRequested",
|
|
"device_id": device_id,
|
|
}
|
|
)
|
|
elif provider == "TensorrtExecutionProvider":
|
|
# TensorrtExecutionProvider uses too much memory without options to control it
|
|
# so it is not enabled by default
|
|
if device == "Tensorrt":
|
|
os.makedirs(
|
|
"/config/model_cache/tensorrt/ort/trt-engines", exist_ok=True
|
|
)
|
|
device_id = 0 if not device.isdigit() else int(device)
|
|
providers.append(provider)
|
|
options.append(
|
|
{
|
|
"device_id": device_id,
|
|
"trt_fp16_enable": requires_fp16
|
|
and os.environ.get("USE_FP_16", "True") != "False",
|
|
"trt_timing_cache_enable": True,
|
|
"trt_engine_cache_enable": True,
|
|
"trt_timing_cache_path": "/config/model_cache/tensorrt/ort",
|
|
"trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines",
|
|
}
|
|
)
|
|
else:
|
|
continue
|
|
elif provider == "OpenVINOExecutionProvider":
|
|
os.makedirs("/config/model_cache/openvino/ort", exist_ok=True)
|
|
providers.append(provider)
|
|
options.append(
|
|
{
|
|
"arena_extend_strategy": "kSameAsRequested",
|
|
"cache_dir": "/config/model_cache/openvino/ort",
|
|
"device_type": device,
|
|
}
|
|
)
|
|
elif provider == "CPUExecutionProvider":
|
|
providers.append(provider)
|
|
options.append(
|
|
{
|
|
"enable_cpu_mem_arena": False,
|
|
}
|
|
)
|
|
else:
|
|
providers.append(provider)
|
|
options.append({})
|
|
|
|
return (providers, options)
|
|
|
|
|
|
class ONNXModelRunner:
|
|
"""Run onnx models optimally based on available hardware."""
|
|
|
|
def __init__(self, model_path: str, device: str, requires_fp16: bool = False):
|
|
self.model_path = model_path
|
|
self.ort: ort.InferenceSession = None
|
|
self.ov: ov.Core = None
|
|
providers, options = get_ort_providers(device == "CPU", device, requires_fp16)
|
|
self.interpreter = None
|
|
|
|
if "OpenVINOExecutionProvider" in providers:
|
|
try:
|
|
# use OpenVINO directly
|
|
self.type = "ov"
|
|
self.ov = ov.Core()
|
|
self.ov.set_property(
|
|
{ov.properties.cache_dir: "/config/model_cache/openvino"}
|
|
)
|
|
self.interpreter = self.ov.compile_model(
|
|
model=model_path, device_name=device
|
|
)
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"OpenVINO failed to build model, using CPU instead: {e}"
|
|
)
|
|
self.interpreter = None
|
|
|
|
# Use ONNXRuntime
|
|
if self.interpreter is None:
|
|
self.type = "ort"
|
|
self.ort = ort.InferenceSession(
|
|
model_path,
|
|
providers=providers,
|
|
provider_options=options,
|
|
)
|
|
|
|
def get_input_names(self) -> list[str]:
|
|
if self.type == "ov":
|
|
input_names = []
|
|
|
|
for input in self.interpreter.inputs:
|
|
input_names.extend(input.names)
|
|
|
|
return input_names
|
|
elif self.type == "ort":
|
|
return [input.name for input in self.ort.get_inputs()]
|
|
|
|
def run(self, input: dict[str, Any]) -> Any:
|
|
if self.type == "ov":
|
|
infer_request = self.interpreter.create_infer_request()
|
|
input_tensor = list(input.values())
|
|
|
|
if len(input_tensor) == 1:
|
|
input_tensor = ov.Tensor(array=input_tensor[0])
|
|
else:
|
|
input_tensor = ov.Tensor(array=input_tensor)
|
|
|
|
infer_request.infer(input_tensor)
|
|
return [infer_request.get_output_tensor().data]
|
|
elif self.type == "ort":
|
|
return self.ort.run(None, input)
|