mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-07 00:06:57 +01:00
27144eb0b9
* don't zoom if camera doesn't support it * basic zooming * make zooming configurable * zooming docs * optional zooming in camera status * Use absolute instead of relative zooming * increase edge threshold * zoom considering object area * bugfixes * catch onvif zooming errors * relative zooming option for dahua/amcrest cams * docs * docs * don't make small movements * remove old logger statement * fix small movements * use enum in config for zooming * fix formatting * empty move queue first * clear tracked object before waiting for stop * use velocity estimation for movements * docs updates * add tests * typos * recalc every 50 moves * adjust zoom based on estimate box if calibrated * tweaks for fast objects and large movements * use real time for calibration and add info logging * docs updates * remove area scale * Add example video to docs * zooming font header size the same as the others * log an error if a ptz doesn't report a MoveStatus * debug logging for onvif service capabilities * ensure camera supports ONVIF MoveStatus
1057 lines
35 KiB
Python
Executable File
1057 lines
35 KiB
Python
Executable File
import datetime
|
|
import logging
|
|
import math
|
|
import multiprocessing as mp
|
|
import os
|
|
import queue
|
|
import signal
|
|
import subprocess as sp
|
|
import threading
|
|
import time
|
|
from collections import defaultdict
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from setproctitle import setproctitle
|
|
|
|
from frigate.config import CameraConfig, DetectConfig, ModelConfig
|
|
from frigate.const import ALL_ATTRIBUTE_LABELS, ATTRIBUTE_LABEL_MAP, CACHE_DIR
|
|
from frigate.detectors.detector_config import PixelFormatEnum
|
|
from frigate.log import LogPipe
|
|
from frigate.motion import MotionDetector
|
|
from frigate.motion.improved_motion import ImprovedMotionDetector
|
|
from frigate.object_detection import RemoteObjectDetector
|
|
from frigate.ptz.autotrack import ptz_moving_at_frame_time
|
|
from frigate.track import ObjectTracker
|
|
from frigate.track.norfair_tracker import NorfairTracker
|
|
from frigate.types import PTZMetricsTypes
|
|
from frigate.util.builtin import EventsPerSecond
|
|
from frigate.util.image import (
|
|
FrameManager,
|
|
SharedMemoryFrameManager,
|
|
area,
|
|
calculate_region,
|
|
draw_box_with_label,
|
|
intersection,
|
|
intersection_over_union,
|
|
yuv_region_2_bgr,
|
|
yuv_region_2_rgb,
|
|
yuv_region_2_yuv,
|
|
)
|
|
from frigate.util.services import listen
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def filtered(obj, objects_to_track, object_filters):
|
|
object_name = obj[0]
|
|
object_score = obj[1]
|
|
object_box = obj[2]
|
|
object_area = obj[3]
|
|
object_ratio = obj[4]
|
|
|
|
if object_name not in objects_to_track:
|
|
return True
|
|
|
|
if object_name in object_filters:
|
|
obj_settings = object_filters[object_name]
|
|
|
|
# if the min area is larger than the
|
|
# detected object, don't add it to detected objects
|
|
if obj_settings.min_area > object_area:
|
|
return True
|
|
|
|
# if the detected object is larger than the
|
|
# max area, don't add it to detected objects
|
|
if obj_settings.max_area < object_area:
|
|
return True
|
|
|
|
# if the score is lower than the min_score, skip
|
|
if obj_settings.min_score > object_score:
|
|
return True
|
|
|
|
# if the object is not proportionally wide enough
|
|
if obj_settings.min_ratio > object_ratio:
|
|
return True
|
|
|
|
# if the object is proportionally too wide
|
|
if obj_settings.max_ratio < object_ratio:
|
|
return True
|
|
|
|
if obj_settings.mask is not None:
|
|
# compute the coordinates of the object and make sure
|
|
# the location isn't outside the bounds of the image (can happen from rounding)
|
|
object_xmin = object_box[0]
|
|
object_xmax = object_box[2]
|
|
object_ymax = object_box[3]
|
|
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
|
|
x_location = min(
|
|
int((object_xmax + object_xmin) / 2.0),
|
|
len(obj_settings.mask[0]) - 1,
|
|
)
|
|
|
|
# if the object is in a masked location, don't add it to detected objects
|
|
if obj_settings.mask[y_location][x_location] == 0:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def get_min_region_size(model_config: ModelConfig) -> int:
|
|
"""Get the min region size."""
|
|
return max(model_config.height, model_config.width)
|
|
|
|
|
|
def create_tensor_input(frame, model_config: ModelConfig, region):
|
|
if model_config.input_pixel_format == PixelFormatEnum.rgb:
|
|
cropped_frame = yuv_region_2_rgb(frame, region)
|
|
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
|
|
cropped_frame = yuv_region_2_bgr(frame, region)
|
|
else:
|
|
cropped_frame = yuv_region_2_yuv(frame, region)
|
|
|
|
# Resize if needed
|
|
if cropped_frame.shape != (model_config.height, model_config.width, 3):
|
|
cropped_frame = cv2.resize(
|
|
cropped_frame,
|
|
dsize=(model_config.width, model_config.height),
|
|
interpolation=cv2.INTER_LINEAR,
|
|
)
|
|
|
|
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
|
return np.expand_dims(cropped_frame, axis=0)
|
|
|
|
|
|
def stop_ffmpeg(ffmpeg_process, logger):
|
|
logger.info("Terminating the existing ffmpeg process...")
|
|
ffmpeg_process.terminate()
|
|
try:
|
|
logger.info("Waiting for ffmpeg to exit gracefully...")
|
|
ffmpeg_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
logger.info("FFmpeg didnt exit. Force killing...")
|
|
ffmpeg_process.kill()
|
|
ffmpeg_process.communicate()
|
|
ffmpeg_process = None
|
|
|
|
|
|
def start_or_restart_ffmpeg(
|
|
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
|
|
):
|
|
if ffmpeg_process is not None:
|
|
stop_ffmpeg(ffmpeg_process, logger)
|
|
|
|
if frame_size is None:
|
|
process = sp.Popen(
|
|
ffmpeg_cmd,
|
|
stdout=sp.DEVNULL,
|
|
stderr=logpipe,
|
|
stdin=sp.DEVNULL,
|
|
start_new_session=True,
|
|
)
|
|
else:
|
|
process = sp.Popen(
|
|
ffmpeg_cmd,
|
|
stdout=sp.PIPE,
|
|
stderr=logpipe,
|
|
stdin=sp.DEVNULL,
|
|
bufsize=frame_size * 10,
|
|
start_new_session=True,
|
|
)
|
|
return process
|
|
|
|
|
|
def capture_frames(
|
|
ffmpeg_process,
|
|
camera_name,
|
|
frame_shape,
|
|
frame_manager: FrameManager,
|
|
frame_queue,
|
|
fps: mp.Value,
|
|
skipped_fps: mp.Value,
|
|
current_frame: mp.Value,
|
|
stop_event: mp.Event,
|
|
):
|
|
frame_size = frame_shape[0] * frame_shape[1]
|
|
frame_rate = EventsPerSecond()
|
|
frame_rate.start()
|
|
skipped_eps = EventsPerSecond()
|
|
skipped_eps.start()
|
|
while True:
|
|
fps.value = frame_rate.eps()
|
|
skipped_fps.value = skipped_eps.eps()
|
|
|
|
current_frame.value = datetime.datetime.now().timestamp()
|
|
frame_name = f"{camera_name}{current_frame.value}"
|
|
frame_buffer = frame_manager.create(frame_name, frame_size)
|
|
try:
|
|
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
|
|
except Exception:
|
|
# shutdown has been initiated
|
|
if stop_event.is_set():
|
|
break
|
|
logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.")
|
|
|
|
if ffmpeg_process.poll() is not None:
|
|
logger.error(
|
|
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
|
|
)
|
|
frame_manager.delete(frame_name)
|
|
break
|
|
continue
|
|
|
|
frame_rate.update()
|
|
|
|
# don't lock the queue to check, just try since it should rarely be full
|
|
try:
|
|
# add to the queue
|
|
frame_queue.put(current_frame.value, False)
|
|
# close the frame
|
|
frame_manager.close(frame_name)
|
|
except queue.Full:
|
|
# if the queue is full, skip this frame
|
|
skipped_eps.update()
|
|
frame_manager.delete(frame_name)
|
|
|
|
|
|
class CameraWatchdog(threading.Thread):
|
|
def __init__(
|
|
self,
|
|
camera_name,
|
|
config: CameraConfig,
|
|
frame_queue,
|
|
camera_fps,
|
|
skipped_fps,
|
|
ffmpeg_pid,
|
|
stop_event,
|
|
):
|
|
threading.Thread.__init__(self)
|
|
self.logger = logging.getLogger(f"watchdog.{camera_name}")
|
|
self.camera_name = camera_name
|
|
self.config = config
|
|
self.capture_thread = None
|
|
self.ffmpeg_detect_process = None
|
|
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect")
|
|
self.ffmpeg_other_processes: list[dict[str, any]] = []
|
|
self.camera_fps = camera_fps
|
|
self.skipped_fps = skipped_fps
|
|
self.ffmpeg_pid = ffmpeg_pid
|
|
self.frame_queue = frame_queue
|
|
self.frame_shape = self.config.frame_shape_yuv
|
|
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
|
|
self.stop_event = stop_event
|
|
self.sleeptime = self.config.ffmpeg.retry_interval
|
|
|
|
def run(self):
|
|
self.start_ffmpeg_detect()
|
|
|
|
for c in self.config.ffmpeg_cmds:
|
|
if "detect" in c["roles"]:
|
|
continue
|
|
logpipe = LogPipe(
|
|
f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}"
|
|
)
|
|
self.ffmpeg_other_processes.append(
|
|
{
|
|
"cmd": c["cmd"],
|
|
"roles": c["roles"],
|
|
"logpipe": logpipe,
|
|
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
|
|
}
|
|
)
|
|
|
|
time.sleep(self.sleeptime)
|
|
while not self.stop_event.wait(self.sleeptime):
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
if not self.capture_thread.is_alive():
|
|
self.camera_fps.value = 0
|
|
self.logger.error(
|
|
f"Ffmpeg process crashed unexpectedly for {self.camera_name}."
|
|
)
|
|
self.logger.error(
|
|
"The following ffmpeg logs include the last 100 lines prior to exit."
|
|
)
|
|
self.logpipe.dump()
|
|
self.start_ffmpeg_detect()
|
|
elif now - self.capture_thread.current_frame.value > 20:
|
|
self.camera_fps.value = 0
|
|
self.logger.info(
|
|
f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..."
|
|
)
|
|
self.ffmpeg_detect_process.terminate()
|
|
try:
|
|
self.logger.info("Waiting for ffmpeg to exit gracefully...")
|
|
self.ffmpeg_detect_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
self.logger.info("FFmpeg did not exit. Force killing...")
|
|
self.ffmpeg_detect_process.kill()
|
|
self.ffmpeg_detect_process.communicate()
|
|
elif self.camera_fps.value >= (self.config.detect.fps + 10):
|
|
self.camera_fps.value = 0
|
|
self.logger.info(
|
|
f"{self.camera_name} exceeded fps limit. Exiting ffmpeg..."
|
|
)
|
|
self.ffmpeg_detect_process.terminate()
|
|
try:
|
|
self.logger.info("Waiting for ffmpeg to exit gracefully...")
|
|
self.ffmpeg_detect_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
self.logger.info("FFmpeg did not exit. Force killing...")
|
|
self.ffmpeg_detect_process.kill()
|
|
self.ffmpeg_detect_process.communicate()
|
|
|
|
for p in self.ffmpeg_other_processes:
|
|
poll = p["process"].poll()
|
|
|
|
if self.config.record.enabled and "record" in p["roles"]:
|
|
latest_segment_time = self.get_latest_segment_timestamp(
|
|
p.get(
|
|
"latest_segment_time", datetime.datetime.now().timestamp()
|
|
)
|
|
)
|
|
|
|
if datetime.datetime.now().timestamp() > (
|
|
latest_segment_time + 120
|
|
):
|
|
self.logger.error(
|
|
f"No new recording segments were created for {self.camera_name} in the last 120s. restarting the ffmpeg record process..."
|
|
)
|
|
p["process"] = start_or_restart_ffmpeg(
|
|
p["cmd"],
|
|
self.logger,
|
|
p["logpipe"],
|
|
ffmpeg_process=p["process"],
|
|
)
|
|
continue
|
|
else:
|
|
p["latest_segment_time"] = latest_segment_time
|
|
|
|
if poll is None:
|
|
continue
|
|
|
|
p["logpipe"].dump()
|
|
p["process"] = start_or_restart_ffmpeg(
|
|
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
|
|
)
|
|
|
|
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
|
|
for p in self.ffmpeg_other_processes:
|
|
stop_ffmpeg(p["process"], self.logger)
|
|
p["logpipe"].close()
|
|
self.logpipe.close()
|
|
|
|
def start_ffmpeg_detect(self):
|
|
ffmpeg_cmd = [
|
|
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
|
|
][0]
|
|
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
|
|
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
|
|
)
|
|
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
|
|
self.capture_thread = CameraCapture(
|
|
self.camera_name,
|
|
self.ffmpeg_detect_process,
|
|
self.frame_shape,
|
|
self.frame_queue,
|
|
self.camera_fps,
|
|
self.skipped_fps,
|
|
self.stop_event,
|
|
)
|
|
self.capture_thread.start()
|
|
|
|
def get_latest_segment_timestamp(self, latest_timestamp) -> int:
|
|
"""Checks if ffmpeg is still writing recording segments to cache."""
|
|
cache_files = sorted(
|
|
[
|
|
d
|
|
for d in os.listdir(CACHE_DIR)
|
|
if os.path.isfile(os.path.join(CACHE_DIR, d))
|
|
and d.endswith(".mp4")
|
|
and not d.startswith("clip_")
|
|
]
|
|
)
|
|
newest_segment_timestamp = latest_timestamp
|
|
|
|
for file in cache_files:
|
|
if self.camera_name in file:
|
|
basename = os.path.splitext(file)[0]
|
|
_, date = basename.rsplit("-", maxsplit=1)
|
|
ts = datetime.datetime.strptime(date, "%Y%m%d%H%M%S").timestamp()
|
|
if ts > newest_segment_timestamp:
|
|
newest_segment_timestamp = ts
|
|
|
|
return newest_segment_timestamp
|
|
|
|
|
|
class CameraCapture(threading.Thread):
|
|
def __init__(
|
|
self,
|
|
camera_name,
|
|
ffmpeg_process,
|
|
frame_shape,
|
|
frame_queue,
|
|
fps,
|
|
skipped_fps,
|
|
stop_event,
|
|
):
|
|
threading.Thread.__init__(self)
|
|
self.name = f"capture:{camera_name}"
|
|
self.camera_name = camera_name
|
|
self.frame_shape = frame_shape
|
|
self.frame_queue = frame_queue
|
|
self.fps = fps
|
|
self.stop_event = stop_event
|
|
self.skipped_fps = skipped_fps
|
|
self.frame_manager = SharedMemoryFrameManager()
|
|
self.ffmpeg_process = ffmpeg_process
|
|
self.current_frame = mp.Value("d", 0.0)
|
|
self.last_frame = 0
|
|
|
|
def run(self):
|
|
capture_frames(
|
|
self.ffmpeg_process,
|
|
self.camera_name,
|
|
self.frame_shape,
|
|
self.frame_manager,
|
|
self.frame_queue,
|
|
self.fps,
|
|
self.skipped_fps,
|
|
self.current_frame,
|
|
self.stop_event,
|
|
)
|
|
|
|
|
|
def capture_camera(name, config: CameraConfig, process_info):
|
|
stop_event = mp.Event()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
stop_event.set()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
threading.current_thread().name = f"capture:{name}"
|
|
setproctitle(f"frigate.capture:{name}")
|
|
|
|
frame_queue = process_info["frame_queue"]
|
|
camera_watchdog = CameraWatchdog(
|
|
name,
|
|
config,
|
|
frame_queue,
|
|
process_info["camera_fps"],
|
|
process_info["skipped_fps"],
|
|
process_info["ffmpeg_pid"],
|
|
stop_event,
|
|
)
|
|
camera_watchdog.start()
|
|
camera_watchdog.join()
|
|
|
|
|
|
def track_camera(
|
|
name,
|
|
config: CameraConfig,
|
|
model_config,
|
|
labelmap,
|
|
detection_queue,
|
|
result_connection,
|
|
detected_objects_queue,
|
|
process_info,
|
|
ptz_metrics,
|
|
):
|
|
stop_event = mp.Event()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
stop_event.set()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
threading.current_thread().name = f"process:{name}"
|
|
setproctitle(f"frigate.process:{name}")
|
|
listen()
|
|
|
|
frame_queue = process_info["frame_queue"]
|
|
detection_enabled = process_info["detection_enabled"]
|
|
motion_enabled = process_info["motion_enabled"]
|
|
improve_contrast_enabled = process_info["improve_contrast_enabled"]
|
|
motion_threshold = process_info["motion_threshold"]
|
|
motion_contour_area = process_info["motion_contour_area"]
|
|
|
|
frame_shape = config.frame_shape
|
|
objects_to_track = config.objects.track
|
|
object_filters = config.objects.filters
|
|
|
|
motion_detector = ImprovedMotionDetector(
|
|
frame_shape,
|
|
config.motion,
|
|
config.detect.fps,
|
|
improve_contrast_enabled,
|
|
motion_threshold,
|
|
motion_contour_area,
|
|
)
|
|
object_detector = RemoteObjectDetector(
|
|
name, labelmap, detection_queue, result_connection, model_config, stop_event
|
|
)
|
|
|
|
object_tracker = NorfairTracker(config, ptz_metrics)
|
|
|
|
frame_manager = SharedMemoryFrameManager()
|
|
|
|
process_frames(
|
|
name,
|
|
frame_queue,
|
|
frame_shape,
|
|
model_config,
|
|
config.detect,
|
|
frame_manager,
|
|
motion_detector,
|
|
object_detector,
|
|
object_tracker,
|
|
detected_objects_queue,
|
|
process_info,
|
|
objects_to_track,
|
|
object_filters,
|
|
detection_enabled,
|
|
motion_enabled,
|
|
stop_event,
|
|
ptz_metrics,
|
|
)
|
|
|
|
logger.info(f"{name}: exiting subprocess")
|
|
|
|
|
|
def box_overlaps(b1, b2):
|
|
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
|
|
return False
|
|
return True
|
|
|
|
|
|
def box_inside(b1, b2):
|
|
# check if b2 is inside b1
|
|
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
|
|
return True
|
|
return False
|
|
|
|
|
|
def reduce_boxes(boxes, iou_threshold=0.0):
|
|
clusters = []
|
|
|
|
for box in boxes:
|
|
matched = 0
|
|
for cluster in clusters:
|
|
if intersection_over_union(box, cluster) > iou_threshold:
|
|
matched = 1
|
|
cluster[0] = min(cluster[0], box[0])
|
|
cluster[1] = min(cluster[1], box[1])
|
|
cluster[2] = max(cluster[2], box[2])
|
|
cluster[3] = max(cluster[3], box[3])
|
|
|
|
if not matched:
|
|
clusters.append(list(box))
|
|
|
|
return [tuple(c) for c in clusters]
|
|
|
|
|
|
def intersects_any(box_a, boxes):
|
|
for box in boxes:
|
|
if box_overlaps(box_a, box):
|
|
return True
|
|
return False
|
|
|
|
|
|
def detect(
|
|
detect_config: DetectConfig,
|
|
object_detector,
|
|
frame,
|
|
model_config,
|
|
region,
|
|
objects_to_track,
|
|
object_filters,
|
|
):
|
|
tensor_input = create_tensor_input(frame, model_config, region)
|
|
|
|
detections = []
|
|
region_detections = object_detector.detect(tensor_input)
|
|
for d in region_detections:
|
|
box = d[2]
|
|
size = region[2] - region[0]
|
|
x_min = int(max(0, (box[1] * size) + region[0]))
|
|
y_min = int(max(0, (box[0] * size) + region[1]))
|
|
x_max = int(min(detect_config.width - 1, (box[3] * size) + region[0]))
|
|
y_max = int(min(detect_config.height - 1, (box[2] * size) + region[1]))
|
|
|
|
# ignore objects that were detected outside the frame
|
|
if (x_min >= detect_config.width - 1) or (y_min >= detect_config.height - 1):
|
|
continue
|
|
|
|
width = x_max - x_min
|
|
height = y_max - y_min
|
|
area = width * height
|
|
ratio = width / max(1, height)
|
|
det = (
|
|
d[0],
|
|
d[1],
|
|
(x_min, y_min, x_max, y_max),
|
|
area,
|
|
ratio,
|
|
region,
|
|
)
|
|
# apply object filters
|
|
if filtered(det, objects_to_track, object_filters):
|
|
continue
|
|
detections.append(det)
|
|
return detections
|
|
|
|
|
|
def get_cluster_boundary(box, min_region):
|
|
# compute the max region size for the current box (box is 10% of region)
|
|
box_width = box[2] - box[0]
|
|
box_height = box[3] - box[1]
|
|
max_region_area = abs(box_width * box_height) / 0.1
|
|
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
|
|
|
|
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
|
|
|
|
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
|
|
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
|
|
|
|
return [
|
|
int(centroid[0] - max_x_dist),
|
|
int(centroid[1] - max_y_dist),
|
|
int(centroid[0] + max_x_dist),
|
|
int(centroid[1] + max_y_dist),
|
|
]
|
|
|
|
|
|
def get_cluster_candidates(frame_shape, min_region, boxes):
|
|
# and create a cluster of other boxes using it's max region size
|
|
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
|
|
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
|
|
# determined by the max_region size minus half the box + 20%
|
|
# TODO: see if we can do this with numpy
|
|
cluster_candidates = []
|
|
used_boxes = []
|
|
# loop over each box
|
|
for current_index, b in enumerate(boxes):
|
|
if current_index in used_boxes:
|
|
continue
|
|
cluster = [current_index]
|
|
used_boxes.append(current_index)
|
|
cluster_boundary = get_cluster_boundary(b, min_region)
|
|
# find all other boxes that fit inside the boundary
|
|
for compare_index, compare_box in enumerate(boxes):
|
|
if compare_index in used_boxes:
|
|
continue
|
|
|
|
# if the box is not inside the potential cluster area, cluster them
|
|
if not box_inside(cluster_boundary, compare_box):
|
|
continue
|
|
|
|
# get the region if you were to add this box to the cluster
|
|
potential_cluster = cluster + [compare_index]
|
|
cluster_region = get_cluster_region(
|
|
frame_shape, min_region, potential_cluster, boxes
|
|
)
|
|
# if region could be smaller and either box would be too small
|
|
# for the resulting region, dont cluster
|
|
should_cluster = True
|
|
if (cluster_region[2] - cluster_region[0]) > min_region:
|
|
for b in potential_cluster:
|
|
box = boxes[b]
|
|
# boxes should be more than 5% of the area of the region
|
|
if area(box) / area(cluster_region) < 0.05:
|
|
should_cluster = False
|
|
break
|
|
|
|
if should_cluster:
|
|
cluster.append(compare_index)
|
|
used_boxes.append(compare_index)
|
|
cluster_candidates.append(cluster)
|
|
|
|
# return the unique clusters only
|
|
unique = {tuple(sorted(c)) for c in cluster_candidates}
|
|
return [list(tup) for tup in unique]
|
|
|
|
|
|
def get_cluster_region(frame_shape, min_region, cluster, boxes):
|
|
min_x = frame_shape[1]
|
|
min_y = frame_shape[0]
|
|
max_x = 0
|
|
max_y = 0
|
|
for b in cluster:
|
|
min_x = min(boxes[b][0], min_x)
|
|
min_y = min(boxes[b][1], min_y)
|
|
max_x = max(boxes[b][2], max_x)
|
|
max_y = max(boxes[b][3], max_y)
|
|
return calculate_region(
|
|
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
|
|
)
|
|
|
|
|
|
def get_consolidated_object_detections(detected_object_groups):
|
|
"""Drop detections that overlap too much"""
|
|
consolidated_detections = []
|
|
for group in detected_object_groups.values():
|
|
# if the group only has 1 item, skip
|
|
if len(group) == 1:
|
|
consolidated_detections.append(group[0])
|
|
continue
|
|
|
|
# sort smallest to largest by area
|
|
sorted_by_area = sorted(group, key=lambda g: g[3])
|
|
|
|
for current_detection_idx in range(0, len(sorted_by_area)):
|
|
current_detection = sorted_by_area[current_detection_idx][2]
|
|
overlap = 0
|
|
for to_check_idx in range(
|
|
min(current_detection_idx + 1, len(sorted_by_area)),
|
|
len(sorted_by_area),
|
|
):
|
|
to_check = sorted_by_area[to_check_idx][2]
|
|
intersect_box = intersection(current_detection, to_check)
|
|
# if 90% of smaller detection is inside of another detection, consolidate
|
|
if (
|
|
intersect_box is not None
|
|
and area(intersect_box) / area(current_detection) > 0.9
|
|
):
|
|
overlap = 1
|
|
break
|
|
if overlap == 0:
|
|
consolidated_detections.append(sorted_by_area[current_detection_idx])
|
|
|
|
return consolidated_detections
|
|
|
|
|
|
def process_frames(
|
|
camera_name: str,
|
|
frame_queue: mp.Queue,
|
|
frame_shape,
|
|
model_config: ModelConfig,
|
|
detect_config: DetectConfig,
|
|
frame_manager: FrameManager,
|
|
motion_detector: MotionDetector,
|
|
object_detector: RemoteObjectDetector,
|
|
object_tracker: ObjectTracker,
|
|
detected_objects_queue: mp.Queue,
|
|
process_info: dict,
|
|
objects_to_track: list[str],
|
|
object_filters,
|
|
detection_enabled: mp.Value,
|
|
motion_enabled: mp.Value,
|
|
stop_event,
|
|
ptz_metrics: PTZMetricsTypes,
|
|
exit_on_empty: bool = False,
|
|
):
|
|
fps = process_info["process_fps"]
|
|
detection_fps = process_info["detection_fps"]
|
|
current_frame_time = process_info["detection_frame"]
|
|
|
|
fps_tracker = EventsPerSecond()
|
|
fps_tracker.start()
|
|
|
|
startup_scan_counter = 0
|
|
|
|
region_min_size = get_min_region_size(model_config)
|
|
|
|
while not stop_event.is_set():
|
|
try:
|
|
if exit_on_empty:
|
|
frame_time = frame_queue.get(False)
|
|
else:
|
|
frame_time = frame_queue.get(True, 1)
|
|
except queue.Empty:
|
|
if exit_on_empty:
|
|
logger.info("Exiting track_objects...")
|
|
break
|
|
continue
|
|
|
|
current_frame_time.value = frame_time
|
|
ptz_metrics["ptz_frame_time"].value = frame_time
|
|
|
|
frame = frame_manager.get(
|
|
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
|
|
)
|
|
|
|
if frame is None:
|
|
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
|
|
continue
|
|
|
|
# look for motion if enabled and ptz is not moving
|
|
# ptz_moving_at_frame_time() always returns False for
|
|
# non ptz/autotracking cameras
|
|
motion_boxes = (
|
|
motion_detector.detect(frame)
|
|
if motion_enabled.value
|
|
and not ptz_moving_at_frame_time(
|
|
frame_time,
|
|
ptz_metrics["ptz_start_time"].value,
|
|
ptz_metrics["ptz_stop_time"].value,
|
|
)
|
|
else []
|
|
)
|
|
|
|
regions = []
|
|
consolidated_detections = []
|
|
|
|
# if detection is disabled
|
|
if not detection_enabled.value:
|
|
object_tracker.match_and_update(frame_time, [])
|
|
else:
|
|
# get stationary object ids
|
|
# check every Nth frame for stationary objects
|
|
# disappeared objects are not stationary
|
|
# also check for overlapping motion boxes
|
|
stationary_object_ids = [
|
|
obj["id"]
|
|
for obj in object_tracker.tracked_objects.values()
|
|
# if it has exceeded the stationary threshold
|
|
if obj["motionless_count"] >= detect_config.stationary.threshold
|
|
# and it isn't due for a periodic check
|
|
and (
|
|
detect_config.stationary.interval == 0
|
|
or obj["motionless_count"] % detect_config.stationary.interval != 0
|
|
)
|
|
# and it hasn't disappeared
|
|
and object_tracker.disappeared[obj["id"]] == 0
|
|
# and it doesn't overlap with any current motion boxes
|
|
and not intersects_any(obj["box"], motion_boxes)
|
|
]
|
|
|
|
# get tracked object boxes that aren't stationary
|
|
tracked_object_boxes = [
|
|
obj["estimate"]
|
|
for obj in object_tracker.tracked_objects.values()
|
|
if obj["id"] not in stationary_object_ids
|
|
]
|
|
|
|
combined_boxes = motion_boxes + tracked_object_boxes
|
|
|
|
cluster_candidates = get_cluster_candidates(
|
|
frame_shape, region_min_size, combined_boxes
|
|
)
|
|
|
|
regions = [
|
|
get_cluster_region(
|
|
frame_shape, region_min_size, candidate, combined_boxes
|
|
)
|
|
for candidate in cluster_candidates
|
|
]
|
|
|
|
# if starting up, get the next startup scan region
|
|
if startup_scan_counter < 9:
|
|
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
|
|
ymax = int(frame_shape[0] / 3 + ymin)
|
|
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
|
|
xmax = int(frame_shape[1] / 3 + xmin)
|
|
regions.append(
|
|
calculate_region(
|
|
frame_shape,
|
|
xmin,
|
|
ymin,
|
|
xmax,
|
|
ymax,
|
|
region_min_size,
|
|
multiplier=1.2,
|
|
)
|
|
)
|
|
startup_scan_counter += 1
|
|
|
|
# resize regions and detect
|
|
# seed with stationary objects
|
|
detections = [
|
|
(
|
|
obj["label"],
|
|
obj["score"],
|
|
obj["box"],
|
|
obj["area"],
|
|
obj["ratio"],
|
|
obj["region"],
|
|
)
|
|
for obj in object_tracker.tracked_objects.values()
|
|
if obj["id"] in stationary_object_ids
|
|
]
|
|
|
|
for region in regions:
|
|
detections.extend(
|
|
detect(
|
|
detect_config,
|
|
object_detector,
|
|
frame,
|
|
model_config,
|
|
region,
|
|
objects_to_track,
|
|
object_filters,
|
|
)
|
|
)
|
|
|
|
#########
|
|
# merge objects
|
|
#########
|
|
# group by name
|
|
detected_object_groups = defaultdict(lambda: [])
|
|
for detection in detections:
|
|
detected_object_groups[detection[0]].append(detection)
|
|
|
|
selected_objects = []
|
|
for group in detected_object_groups.values():
|
|
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
|
# o[2] is the box of the object: xmin, ymin, xmax, ymax
|
|
# apply max/min to ensure values do not exceed the known frame size
|
|
boxes = [
|
|
(
|
|
o[2][0],
|
|
o[2][1],
|
|
o[2][2] - o[2][0],
|
|
o[2][3] - o[2][1],
|
|
)
|
|
for o in group
|
|
]
|
|
confidences = [o[1] for o in group]
|
|
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
|
|
|
# add objects
|
|
for index in idxs:
|
|
index = index if isinstance(index, np.int32) else index[0]
|
|
obj = group[index]
|
|
selected_objects.append(obj)
|
|
|
|
# set the detections list to only include top objects
|
|
detections = selected_objects
|
|
|
|
# if detection was run on this frame, consolidate
|
|
if len(regions) > 0:
|
|
# group by name
|
|
detected_object_groups = defaultdict(lambda: [])
|
|
for detection in detections:
|
|
detected_object_groups[detection[0]].append(detection)
|
|
|
|
consolidated_detections = get_consolidated_object_detections(
|
|
detected_object_groups
|
|
)
|
|
tracked_detections = [
|
|
d
|
|
for d in consolidated_detections
|
|
if d[0] not in ALL_ATTRIBUTE_LABELS
|
|
]
|
|
# now that we have refined our detections, we need to track objects
|
|
object_tracker.match_and_update(frame_time, tracked_detections)
|
|
# else, just update the frame times for the stationary objects
|
|
else:
|
|
object_tracker.update_frame_times(frame_time)
|
|
|
|
# group the attribute detections based on what label they apply to
|
|
attribute_detections = {}
|
|
for label, attribute_labels in ATTRIBUTE_LABEL_MAP.items():
|
|
attribute_detections[label] = [
|
|
d for d in consolidated_detections if d[0] in attribute_labels
|
|
]
|
|
|
|
# build detections and add attributes
|
|
detections = {}
|
|
for obj in object_tracker.tracked_objects.values():
|
|
attributes = []
|
|
# if the objects label has associated attribute detections
|
|
if obj["label"] in attribute_detections.keys():
|
|
# add them to attributes if they intersect
|
|
for attribute_detection in attribute_detections[obj["label"]]:
|
|
if box_inside(obj["box"], (attribute_detection[2])):
|
|
attributes.append(
|
|
{
|
|
"label": attribute_detection[0],
|
|
"score": attribute_detection[1],
|
|
"box": attribute_detection[2],
|
|
}
|
|
)
|
|
detections[obj["id"]] = {**obj, "attributes": attributes}
|
|
|
|
# debug object tracking
|
|
if False:
|
|
bgr_frame = cv2.cvtColor(
|
|
frame,
|
|
cv2.COLOR_YUV2BGR_I420,
|
|
)
|
|
object_tracker.debug_draw(bgr_frame, frame_time)
|
|
cv2.imwrite(
|
|
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
|
|
)
|
|
# debug
|
|
if False:
|
|
bgr_frame = cv2.cvtColor(
|
|
frame,
|
|
cv2.COLOR_YUV2BGR_I420,
|
|
)
|
|
|
|
for m_box in motion_boxes:
|
|
cv2.rectangle(
|
|
bgr_frame,
|
|
(m_box[0], m_box[1]),
|
|
(m_box[2], m_box[3]),
|
|
(0, 0, 255),
|
|
2,
|
|
)
|
|
|
|
for b in tracked_object_boxes:
|
|
cv2.rectangle(
|
|
bgr_frame,
|
|
(b[0], b[1]),
|
|
(b[2], b[3]),
|
|
(255, 0, 0),
|
|
2,
|
|
)
|
|
|
|
for obj in object_tracker.tracked_objects.values():
|
|
if obj["frame_time"] == frame_time:
|
|
thickness = 2
|
|
color = model_config.colormap[obj["label"]]
|
|
else:
|
|
thickness = 1
|
|
color = (255, 0, 0)
|
|
|
|
# draw the bounding boxes on the frame
|
|
box = obj["box"]
|
|
|
|
draw_box_with_label(
|
|
bgr_frame,
|
|
box[0],
|
|
box[1],
|
|
box[2],
|
|
box[3],
|
|
obj["label"],
|
|
obj["id"],
|
|
thickness=thickness,
|
|
color=color,
|
|
)
|
|
|
|
for region in regions:
|
|
cv2.rectangle(
|
|
bgr_frame,
|
|
(region[0], region[1]),
|
|
(region[2], region[3]),
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
|
|
cv2.imwrite(
|
|
f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg",
|
|
bgr_frame,
|
|
)
|
|
# add to the queue if not full
|
|
if detected_objects_queue.full():
|
|
frame_manager.delete(f"{camera_name}{frame_time}")
|
|
continue
|
|
else:
|
|
fps_tracker.update()
|
|
fps.value = fps_tracker.eps()
|
|
detected_objects_queue.put(
|
|
(
|
|
camera_name,
|
|
frame_time,
|
|
detections,
|
|
motion_boxes,
|
|
regions,
|
|
)
|
|
)
|
|
detection_fps.value = object_detector.fps.eps()
|
|
frame_manager.close(f"{camera_name}{frame_time}")
|