mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			461 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			461 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import copy
 | |
| import datetime
 | |
| import hashlib
 | |
| import itertools
 | |
| import json
 | |
| import logging
 | |
| import queue
 | |
| import threading
 | |
| import time
 | |
| from collections import Counter, defaultdict
 | |
| from statistics import mean, median
 | |
| from typing import Callable, Dict
 | |
| 
 | |
| import cv2
 | |
| import matplotlib.pyplot as plt
 | |
| import numpy as np
 | |
| 
 | |
| from frigate.config import CameraConfig
 | |
| from frigate.edgetpu import load_labels
 | |
| from frigate.util import SharedMemoryFrameManager, draw_box_with_label
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| PATH_TO_LABELS = '/labelmap.txt'
 | |
| 
 | |
| LABELS = load_labels(PATH_TO_LABELS)
 | |
| cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
 | |
| 
 | |
| COLOR_MAP = {}
 | |
| for key, val in LABELS.items():
 | |
|     COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
 | |
| 
 | |
| def zone_filtered(obj, object_config):
 | |
|     object_name = obj['label']
 | |
| 
 | |
|     if object_name in object_config:
 | |
|         obj_settings = object_config[object_name]
 | |
| 
 | |
|         # if the min area is larger than the
 | |
|         # detected object, don't add it to detected objects
 | |
|         if obj_settings.min_area > obj['area']:
 | |
|             return True
 | |
|         
 | |
|         # if the detected object is larger than the
 | |
|         # max area, don't add it to detected objects
 | |
|         if obj_settings.max_area < obj['area']:
 | |
|             return True
 | |
| 
 | |
|         # if the score is lower than the threshold, skip
 | |
|         if obj_settings.threshold > obj['computed_score']:
 | |
|             return True
 | |
|         
 | |
|     return False
 | |
| 
 | |
| def on_edge(box, frame_shape):
 | |
|     if (
 | |
|         box[0] == 0 or
 | |
|         box[1] == 0 or
 | |
|         box[2] == frame_shape[1]-1 or
 | |
|         box[3] == frame_shape[0]-1
 | |
|     ):
 | |
|         return True
 | |
| 
 | |
| def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
 | |
|     # larger is better
 | |
|     # cutoff images are less ideal, but they should also be smaller?
 | |
|     # better scores are obviously better too
 | |
| 
 | |
|     # if the new_thumb is on an edge, and the current thumb is not
 | |
|     if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
 | |
|         return False
 | |
| 
 | |
|     # if the score is better by more than 5%
 | |
|     if new_obj['score'] > current_thumb['score']+.05:
 | |
|         return True
 | |
|     
 | |
|     # if the area is 10% larger
 | |
|     if new_obj['area'] > current_thumb['area']*1.1:
 | |
|         return True
 | |
|     
 | |
|     return False
 | |
| 
 | |
| # Maintains the state of a camera
 | |
| class CameraState():
 | |
|     def __init__(self, name, config, frame_manager):
 | |
|         self.name = name
 | |
|         self.config = config
 | |
|         self.frame_manager = frame_manager
 | |
| 
 | |
|         self.best_objects = {}
 | |
|         self.object_status = defaultdict(lambda: 'OFF')
 | |
|         self.tracked_objects = {}
 | |
|         self.thumbnail_frames = {}
 | |
|         self.zone_objects = defaultdict(lambda: [])
 | |
|         self._current_frame = np.zeros(self.config.frame_shape_yuv, np.uint8)
 | |
|         self.current_frame_lock = threading.Lock()
 | |
|         self.current_frame_time = 0.0
 | |
|         self.previous_frame_id = None
 | |
|         self.callbacks = defaultdict(lambda: [])
 | |
| 
 | |
|     def get_current_frame(self, draw=False):
 | |
|         with self.current_frame_lock:
 | |
|             frame_copy = np.copy(self._current_frame)
 | |
|             frame_time = self.current_frame_time
 | |
|             tracked_objects = copy.deepcopy(self.tracked_objects)
 | |
|         
 | |
|         frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
 | |
|         # draw on the frame
 | |
|         if draw:
 | |
|             # draw the bounding boxes on the frame
 | |
|             for obj in tracked_objects.values():
 | |
|                 thickness = 2
 | |
|                 color = COLOR_MAP[obj['label']]
 | |
|                 
 | |
|                 if obj['frame_time'] != frame_time:
 | |
|                     thickness = 1
 | |
|                     color = (255,0,0)
 | |
| 
 | |
|                 # draw the bounding boxes on the frame
 | |
|                 box = obj['box']
 | |
|                 draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
 | |
|                 # draw the regions on the frame
 | |
|                 region = obj['region']
 | |
|                 cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
 | |
|             
 | |
|             if self.config.snapshots.show_timestamp:
 | |
|                 time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
 | |
|                 cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | |
| 
 | |
|             if self.config.snapshots.draw_zones:
 | |
|                 for name, zone in self.config.zones.items():
 | |
|                     thickness = 8 if any([name in obj['zones'] for obj in tracked_objects.values()]) else 2
 | |
|                     cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
 | |
|         
 | |
|         return frame_copy
 | |
| 
 | |
|     def false_positive(self, obj):
 | |
|         # once a true positive, always a true positive
 | |
|         if not obj.get('false_positive', True):
 | |
|             return False
 | |
| 
 | |
|         threshold = self.config.objects.filters[obj['label']].threshold
 | |
|         if obj['computed_score'] < threshold:
 | |
|             return True
 | |
|         return False
 | |
| 
 | |
|     def compute_score(self, obj):
 | |
|         scores = obj['score_history'][:]
 | |
|         # pad with zeros if you dont have at least 3 scores
 | |
|         if len(scores) < 3:
 | |
|             scores += [0.0]*(3 - len(scores))
 | |
|         return median(scores)
 | |
| 
 | |
|     def on(self, event_type: str, callback: Callable[[Dict], None]):
 | |
|         self.callbacks[event_type].append(callback)
 | |
| 
 | |
|     def update(self, frame_time, tracked_objects):
 | |
|         self.current_frame_time = frame_time
 | |
|         # get the new frame and delete the old frame
 | |
|         frame_id = f"{self.name}{frame_time}"
 | |
|         current_frame = self.frame_manager.get(frame_id, self.config.frame_shape_yuv)
 | |
| 
 | |
|         current_ids = tracked_objects.keys()
 | |
|         previous_ids = self.tracked_objects.keys()
 | |
|         removed_ids = list(set(previous_ids).difference(current_ids))
 | |
|         new_ids = list(set(current_ids).difference(previous_ids))
 | |
|         updated_ids = list(set(current_ids).intersection(previous_ids))
 | |
| 
 | |
|         for id in new_ids:
 | |
|             new_obj = self.tracked_objects[id] = tracked_objects[id]
 | |
|             new_obj['zones'] = []
 | |
|             new_obj['entered_zones'] = set()
 | |
|             new_obj['thumbnail'] = {
 | |
|                 'frame': new_obj['frame_time'],
 | |
|                 'box': new_obj['box'],
 | |
|                 'area': new_obj['area'],
 | |
|                 'region': new_obj['region'],
 | |
|                 'score': new_obj['score']
 | |
|             }
 | |
| 
 | |
|             # start the score history
 | |
|             new_obj['score_history'] = [self.tracked_objects[id]['score']]
 | |
| 
 | |
|             # calculate if this is a false positive
 | |
|             new_obj['computed_score'] = self.compute_score(self.tracked_objects[id])
 | |
|             new_obj['top_score'] = self.tracked_objects[id]['computed_score']
 | |
|             new_obj['false_positive'] = self.false_positive(self.tracked_objects[id])
 | |
| 
 | |
|             # call event handlers
 | |
|             for c in self.callbacks['start']:
 | |
|                 c(self.name, new_obj)
 | |
|         
 | |
|         for id in updated_ids:
 | |
|             self.tracked_objects[id].update(tracked_objects[id])
 | |
| 
 | |
|             updated_obj = self.tracked_objects[id]
 | |
| 
 | |
|             # if the object is not in the current frame, add a 0.0 to the score history
 | |
|             if updated_obj['frame_time'] != self.current_frame_time:
 | |
|                 updated_obj['score_history'].append(0.0)
 | |
|             else:
 | |
|                 updated_obj['score_history'].append(updated_obj['score'])
 | |
|             # only keep the last 10 scores
 | |
|             if len(updated_obj['score_history']) > 10:
 | |
|                 updated_obj['score_history'] = updated_obj['score_history'][-10:]
 | |
| 
 | |
|             # calculate if this is a false positive
 | |
|             computed_score = self.compute_score(updated_obj)
 | |
|             updated_obj['computed_score'] = computed_score
 | |
|             if computed_score > updated_obj['top_score']:
 | |
|                 updated_obj['top_score'] = computed_score
 | |
|             updated_obj['false_positive'] = self.false_positive(updated_obj)
 | |
| 
 | |
|             # determine if this frame is a better thumbnail
 | |
|             if is_better_thumbnail(updated_obj['thumbnail'], updated_obj, self.config.frame_shape):
 | |
|                 updated_obj['thumbnail'] = {
 | |
|                     'frame': updated_obj['frame_time'],
 | |
|                     'box': updated_obj['box'],
 | |
|                     'area': updated_obj['area'],
 | |
|                     'region': updated_obj['region'],
 | |
|                     'score': updated_obj['score']
 | |
|                 }
 | |
| 
 | |
|             # call event handlers
 | |
|             for c in self.callbacks['update']:
 | |
|                 c(self.name, updated_obj)
 | |
|         
 | |
|         for id in removed_ids:
 | |
|             # publish events to mqtt
 | |
|             self.tracked_objects[id]['end_time'] = frame_time
 | |
|             for c in self.callbacks['end']:
 | |
|                 c(self.name, self.tracked_objects[id])
 | |
|             del self.tracked_objects[id]
 | |
| 
 | |
|         # check to see if the objects are in any zones
 | |
|         for obj in self.tracked_objects.values():
 | |
|             current_zones = []
 | |
|             bottom_center = (obj['centroid'][0], obj['box'][3])
 | |
|             # check each zone
 | |
|             for name, zone in self.config.zones.items():
 | |
|                 contour = zone.contour
 | |
|                 # check if the object is in the zone
 | |
|                 if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
 | |
|                     # if the object passed the filters once, dont apply again
 | |
|                     if name in obj.get('zones', []) or not zone_filtered(obj, zone.filters):
 | |
|                         current_zones.append(name)
 | |
|                         obj['entered_zones'].add(name)
 | |
| 
 | |
|                     
 | |
|             obj['zones'] = current_zones
 | |
| 
 | |
|         # update frame storage for thumbnails based on thumbnails for all tracked objects
 | |
|         current_thumb_frames = set([obj['thumbnail']['frame'] for obj in self.tracked_objects.values()])
 | |
|         if self.current_frame_time in current_thumb_frames:
 | |
|             self.thumbnail_frames[self.current_frame_time] = np.copy(current_frame)
 | |
|         thumb_frames_to_delete = [t for t in self.thumbnail_frames.keys() if not t in current_thumb_frames]
 | |
|         for t in thumb_frames_to_delete: del self.thumbnail_frames[t]
 | |
| 
 | |
|         # maintain best objects
 | |
|         for obj in self.tracked_objects.values():
 | |
|             object_type = obj['label']
 | |
|             # if the object wasn't seen on the current frame, skip it
 | |
|             if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
 | |
|                 continue
 | |
|             obj_copy = copy.deepcopy(obj)
 | |
|             if object_type in self.best_objects:
 | |
|                 current_best = self.best_objects[object_type]
 | |
|                 now = datetime.datetime.now().timestamp()
 | |
|                 # if the object is a higher score than the current best score 
 | |
|                 # or the current object is older than desired, use the new object
 | |
|                 if obj_copy['score'] > current_best['score'] or (now - current_best['frame_time']) > self.config.best_image_timeout:
 | |
|                     obj_copy['frame'] = np.copy(current_frame)
 | |
|                     self.best_objects[object_type] = obj_copy
 | |
|                     for c in self.callbacks['snapshot']:
 | |
|                         c(self.name, self.best_objects[object_type])
 | |
|             else:
 | |
|                 obj_copy['frame'] = np.copy(current_frame)
 | |
|                 self.best_objects[object_type] = obj_copy
 | |
|                 for c in self.callbacks['snapshot']:
 | |
|                     c(self.name, self.best_objects[object_type])
 | |
|         
 | |
|         # update overall camera state for each object type
 | |
|         obj_counter = Counter()
 | |
|         for obj in self.tracked_objects.values():
 | |
|             if not obj['false_positive']:
 | |
|                 obj_counter[obj['label']] += 1
 | |
|                 
 | |
|         # report on detected objects
 | |
|         for obj_name, count in obj_counter.items():
 | |
|             new_status = 'ON' if count > 0 else 'OFF'
 | |
|             if new_status != self.object_status[obj_name]:
 | |
|                 self.object_status[obj_name] = new_status
 | |
|                 for c in self.callbacks['object_status']:
 | |
|                     c(self.name, obj_name, new_status)
 | |
| 
 | |
|         # expire any objects that are ON and no longer detected
 | |
|         expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
 | |
|         for obj_name in expired_objects:
 | |
|             self.object_status[obj_name] = 'OFF'
 | |
|             for c in self.callbacks['object_status']:
 | |
|                 c(self.name, obj_name, 'OFF')
 | |
|             for c in self.callbacks['snapshot']:
 | |
|                 c(self.name, self.best_objects[obj_name])
 | |
|         
 | |
|         with self.current_frame_lock:
 | |
|             self._current_frame = current_frame
 | |
|             if not self.previous_frame_id is None:
 | |
|                 self.frame_manager.delete(self.previous_frame_id)
 | |
|             self.previous_frame_id = frame_id
 | |
| 
 | |
| class TrackedObjectProcessor(threading.Thread):
 | |
|     def __init__(self, camera_config: Dict[str, CameraConfig], client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
 | |
|         threading.Thread.__init__(self)
 | |
|         self.name = "detected_frames_processor"
 | |
|         self.camera_config = camera_config
 | |
|         self.client = client
 | |
|         self.topic_prefix = topic_prefix
 | |
|         self.tracked_objects_queue = tracked_objects_queue
 | |
|         self.event_queue = event_queue
 | |
|         self.stop_event = stop_event
 | |
|         self.camera_states: Dict[str, CameraState] = {}
 | |
|         self.frame_manager = SharedMemoryFrameManager()
 | |
| 
 | |
|         def start(camera, obj):
 | |
|             # publish events to mqtt
 | |
|             event_data = {
 | |
|               'id': obj['id'],
 | |
|               'label': obj['label'],
 | |
|               'camera': camera,
 | |
|               'start_time': obj['start_time'],
 | |
|               'top_score': obj['top_score'],
 | |
|               'false_positive': obj['false_positive'],
 | |
|               'zones': list(obj['entered_zones'])
 | |
|             }
 | |
|             self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(event_data), retain=False)
 | |
|             self.event_queue.put(('start', camera, obj))
 | |
| 
 | |
|         def update(camera, obj):
 | |
|             pass
 | |
| 
 | |
|         def end(camera, obj):
 | |
|             event_data = {
 | |
|               'id': obj['id'],
 | |
|               'label': obj['label'],
 | |
|               'camera': camera,
 | |
|               'start_time': obj['start_time'],
 | |
|               'end_time': obj['end_time'],
 | |
|               'top_score': obj['top_score'],
 | |
|               'false_positive': obj['false_positive'],
 | |
|               'zones': list(obj['entered_zones'])
 | |
|             }
 | |
|             self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(event_data), retain=False)
 | |
|             self.event_queue.put(('end', camera, obj))
 | |
|         
 | |
|         def snapshot(camera, obj):
 | |
|             if not 'frame' in obj:
 | |
|                 return
 | |
|             
 | |
|             best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_YUV2BGR_I420)
 | |
|             if self.camera_config[camera].snapshots.draw_bounding_boxes:
 | |
|                 thickness = 2
 | |
|                 color = COLOR_MAP[obj['label']]
 | |
|                 box = obj['box']
 | |
|                 draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
 | |
|                 
 | |
|             mqtt_config = self.camera_config[camera].mqtt
 | |
|             if mqtt_config.crop_to_region:
 | |
|                 region = obj['region']
 | |
|                 best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
 | |
|             if mqtt_config.snapshot_height: 
 | |
|                 height = mqtt_config.snapshot_height
 | |
|                 width = int(height*best_frame.shape[1]/best_frame.shape[0])
 | |
|                 best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
 | |
|             
 | |
|             if self.camera_config[camera].snapshots.show_timestamp:
 | |
|                 time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
 | |
|                 size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
 | |
|                 text_width = size[0][0]
 | |
|                 text_height = size[0][1]
 | |
|                 desired_size = max(200, 0.33*best_frame.shape[1])
 | |
|                 font_scale = desired_size/text_width
 | |
|                 cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(255, 255, 255), thickness=2)
 | |
| 
 | |
|             ret, jpg = cv2.imencode('.jpg', best_frame)
 | |
|             if ret:
 | |
|                 jpg_bytes = jpg.tobytes()
 | |
|                 self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
 | |
|         
 | |
|         def object_status(camera, object_name, status):
 | |
|             self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
 | |
| 
 | |
|         for camera in self.camera_config.keys():
 | |
|             camera_state = CameraState(camera, self.camera_config[camera], self.frame_manager)
 | |
|             camera_state.on('start', start)
 | |
|             camera_state.on('update', update)
 | |
|             camera_state.on('end', end)
 | |
|             camera_state.on('snapshot', snapshot)
 | |
|             camera_state.on('object_status', object_status)
 | |
|             self.camera_states[camera] = camera_state
 | |
| 
 | |
|         self.camera_data = defaultdict(lambda: {
 | |
|             'best_objects': {},
 | |
|             'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
 | |
|             'tracked_objects': {},
 | |
|             'current_frame': np.zeros((720,1280,3), np.uint8),
 | |
|             'current_frame_time': 0.0,
 | |
|             'object_id': None
 | |
|         })
 | |
|         # {
 | |
|         #   'zone_name': {
 | |
|         #       'person': ['camera_1', 'camera_2']
 | |
|         #   }
 | |
|         # }
 | |
|         self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
 | |
|         
 | |
|     def get_best(self, camera, label):
 | |
|         best_objects = self.camera_states[camera].best_objects
 | |
|         if label in best_objects:
 | |
|             return best_objects[label]
 | |
|         else:
 | |
|             return {}
 | |
|     
 | |
|     def get_current_frame(self, camera, draw=False):
 | |
|         return self.camera_states[camera].get_current_frame(draw)
 | |
| 
 | |
|     def run(self):
 | |
|         while True:
 | |
|             if self.stop_event.is_set():
 | |
|                 logger.info(f"Exiting object processor...")
 | |
|                 break
 | |
| 
 | |
|             try:
 | |
|                 camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
 | |
|             except queue.Empty:
 | |
|                 continue
 | |
| 
 | |
|             camera_state = self.camera_states[camera]
 | |
| 
 | |
|             camera_state.update(frame_time, current_tracked_objects)
 | |
| 
 | |
|             # update zone status for each label
 | |
|             for zone in camera_state.config.zones.keys():
 | |
|                 # get labels for current camera and all labels in current zone
 | |
|                 labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
 | |
|                 labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
 | |
|                 # for each label in zone
 | |
|                 for label in labels_to_check:
 | |
|                     camera_list = self.zone_data[zone][label]
 | |
|                     # remove or add the camera to the list for the current label
 | |
|                     previous_state = len(camera_list) > 0
 | |
|                     if label in labels_for_camera:
 | |
|                         camera_list.add(camera_state.name)
 | |
|                     elif camera_state.name in camera_list:
 | |
|                         camera_list.remove(camera_state.name)
 | |
|                     new_state = len(camera_list) > 0
 | |
|                     # if the value is changing, send over MQTT
 | |
|                     if previous_state == False and new_state == True:
 | |
|                         self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
 | |
|                     elif previous_state == True and new_state == False:
 | |
|                         self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
 |