mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
3762ac9cbe
* Update version * Face recognition backend (#14495) * Add basic config and face recognition table * Reconfigure updates processing to handle face * Crop frame to face box * Implement face embedding calculation * Get matching face embeddings * Add support face recognition based on existing faces * Use arcface face embeddings instead of generic embeddings model * Add apis for managing faces * Implement face uploading API * Build out more APIs * Add min area config * Handle larger images * Add more debug logs * fix calculation * Reduce timeout * Small tweaks * Use webp images * Use facenet model * Improve face recognition (#14537) * Increase requirements for face to be set * Manage faces properly * Add basic docs * Simplify * Separate out face recognition frome semantic search * Update docs * Formatting * Fix access (#14540) * Face detection (#14544) * Add support for face detection * Add support for detecting faces during registration * Set body size to be larger * Undo * Update version * Face recognition backend (#14495) * Add basic config and face recognition table * Reconfigure updates processing to handle face * Crop frame to face box * Implement face embedding calculation * Get matching face embeddings * Add support face recognition based on existing faces * Use arcface face embeddings instead of generic embeddings model * Add apis for managing faces * Implement face uploading API * Build out more APIs * Add min area config * Handle larger images * Add more debug logs * fix calculation * Reduce timeout * Small tweaks * Use webp images * Use facenet model * Improve face recognition (#14537) * Increase requirements for face to be set * Manage faces properly * Add basic docs * Simplify * Separate out face recognition frome semantic search * Update docs * Formatting * Fix access (#14540) * Face detection (#14544) * Add support for face detection * Add support for detecting faces during registration * Set body size to be larger * Undo * initial foundation for alpr with paddleocr * initial foundation for alpr with paddleocr * initial foundation for alpr with paddleocr * config * config * lpr maintainer * clean up * clean up * fix processing * don't process for stationary cars * fix order * fixes * check for known plates * improved length and character by character confidence * model fixes and small tweaks * docs * placeholder for non frigate+ model lp detection --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
792 lines
27 KiB
Python
792 lines
27 KiB
Python
import logging
|
|
import math
|
|
from typing import List, Tuple
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from pyclipper import ET_CLOSEDPOLYGON, JT_ROUND, PyclipperOffset
|
|
from shapely.geometry import Polygon
|
|
|
|
from frigate.comms.inter_process import InterProcessRequestor
|
|
from frigate.config.semantic_search import LicensePlateRecognitionConfig
|
|
from frigate.embeddings.embeddings import Embeddings
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LicensePlateRecognition:
|
|
def __init__(
|
|
self,
|
|
config: LicensePlateRecognitionConfig,
|
|
requestor: InterProcessRequestor,
|
|
embeddings: Embeddings,
|
|
):
|
|
self.lpr_config = config
|
|
self.requestor = requestor
|
|
self.embeddings = embeddings
|
|
self.detection_model = self.embeddings.lpr_detection_model
|
|
self.classification_model = self.embeddings.lpr_classification_model
|
|
self.recognition_model = self.embeddings.lpr_recognition_model
|
|
self.ctc_decoder = CTCDecoder()
|
|
|
|
self.batch_size = 6
|
|
|
|
# Detection specific parameters
|
|
self.min_size = 3
|
|
self.max_size = 960
|
|
self.box_thresh = 0.8
|
|
self.mask_thresh = 0.8
|
|
|
|
if self.lpr_config.enabled:
|
|
# all models need to be loaded to run LPR
|
|
self.detection_model._load_model_and_utils()
|
|
self.classification_model._load_model_and_utils()
|
|
self.recognition_model._load_model_and_utils()
|
|
|
|
def detect(self, image: np.ndarray) -> List[np.ndarray]:
|
|
"""
|
|
Detect possible license plates in the input image by first resizing and normalizing it,
|
|
running a detection model, and filtering out low-probability regions.
|
|
|
|
Args:
|
|
image (np.ndarray): The input image in which license plates will be detected.
|
|
|
|
Returns:
|
|
List[np.ndarray]: A list of bounding box coordinates representing detected license plates.
|
|
"""
|
|
h, w = image.shape[:2]
|
|
|
|
if sum([h, w]) < 64:
|
|
image = self.zero_pad(image)
|
|
|
|
resized_image = self.resize_image(image)
|
|
normalized_image = self.normalize_image(resized_image)
|
|
|
|
outputs = self.detection_model([normalized_image])[0]
|
|
outputs = outputs[0, :, :]
|
|
|
|
boxes, _ = self.boxes_from_bitmap(outputs, outputs > self.mask_thresh, w, h)
|
|
return self.filter_polygon(boxes, (h, w))
|
|
|
|
def classify(
|
|
self, images: List[np.ndarray]
|
|
) -> Tuple[List[np.ndarray], List[Tuple[str, float]]]:
|
|
"""
|
|
Classify the orientation or category of each detected license plate.
|
|
|
|
Args:
|
|
images (List[np.ndarray]): A list of images of detected license plates.
|
|
|
|
Returns:
|
|
Tuple[List[np.ndarray], List[Tuple[str, float]]]: A tuple of rotated/normalized plate images
|
|
and classification results with confidence scores.
|
|
"""
|
|
num_images = len(images)
|
|
indices = np.argsort([x.shape[1] / x.shape[0] for x in images])
|
|
|
|
for i in range(0, num_images, self.batch_size):
|
|
norm_images = []
|
|
for j in range(i, min(num_images, i + self.batch_size)):
|
|
norm_img = self._preprocess_classification_image(images[indices[j]])
|
|
norm_img = norm_img[np.newaxis, :]
|
|
norm_images.append(norm_img)
|
|
|
|
outputs = self.classification_model(norm_images)
|
|
|
|
return self._process_classification_output(images, outputs)
|
|
|
|
def recognize(
|
|
self, images: List[np.ndarray]
|
|
) -> Tuple[List[str], List[List[float]]]:
|
|
"""
|
|
Recognize the characters on the detected license plates using the recognition model.
|
|
|
|
Args:
|
|
images (List[np.ndarray]): A list of images of license plates to recognize.
|
|
|
|
Returns:
|
|
Tuple[List[str], List[List[float]]]: A tuple of recognized license plate texts and confidence scores.
|
|
"""
|
|
input_shape = [3, 48, 320]
|
|
num_images = len(images)
|
|
|
|
# sort images by aspect ratio for processing
|
|
indices = np.argsort(np.array([x.shape[1] / x.shape[0] for x in images]))
|
|
|
|
for index in range(0, num_images, self.batch_size):
|
|
input_h, input_w = input_shape[1], input_shape[2]
|
|
max_wh_ratio = input_w / input_h
|
|
norm_images = []
|
|
|
|
# calculate the maximum aspect ratio in the current batch
|
|
for i in range(index, min(num_images, index + self.batch_size)):
|
|
h, w = images[indices[i]].shape[0:2]
|
|
max_wh_ratio = max(max_wh_ratio, w * 1.0 / h)
|
|
|
|
# preprocess the images based on the max aspect ratio
|
|
for i in range(index, min(num_images, index + self.batch_size)):
|
|
norm_image = self._preprocess_recognition_image(
|
|
images[indices[i]], max_wh_ratio
|
|
)
|
|
norm_image = norm_image[np.newaxis, :]
|
|
norm_images.append(norm_image)
|
|
|
|
outputs = self.recognition_model(norm_images)
|
|
return self.ctc_decoder(outputs)
|
|
|
|
def process_license_plate(
|
|
self, image: np.ndarray
|
|
) -> Tuple[List[str], List[float], List[int]]:
|
|
"""
|
|
Complete pipeline for detecting, classifying, and recognizing license plates in the input image.
|
|
|
|
Args:
|
|
image (np.ndarray): The input image in which to detect, classify, and recognize license plates.
|
|
|
|
Returns:
|
|
Tuple[List[str], List[float], List[int]]: Detected license plate texts, confidence scores, and areas of the plates.
|
|
"""
|
|
if (
|
|
self.detection_model.runner is None
|
|
or self.classification_model.runner is None
|
|
or self.recognition_model.runner is None
|
|
):
|
|
# we might still be downloading the models
|
|
logger.debug("Model runners not loaded")
|
|
return [], [], []
|
|
|
|
plate_points = self.detect(image)
|
|
if len(plate_points) == 0:
|
|
return [], [], []
|
|
|
|
plate_points = self.sort_polygon(list(plate_points))
|
|
plate_images = [self._crop_license_plate(image, x) for x in plate_points]
|
|
rotated_images, _ = self.classify(plate_images)
|
|
|
|
# keep track of the index of each image for correct area calc later
|
|
sorted_indices = np.argsort([x.shape[1] / x.shape[0] for x in rotated_images])
|
|
reverse_mapping = {
|
|
idx: original_idx for original_idx, idx in enumerate(sorted_indices)
|
|
}
|
|
|
|
results, confidences = self.recognize(rotated_images)
|
|
|
|
if results:
|
|
license_plates = [""] * len(rotated_images)
|
|
average_confidences = [[0.0]] * len(rotated_images)
|
|
areas = [0] * len(rotated_images)
|
|
|
|
# map results back to original image order
|
|
for i, (plate, conf) in enumerate(zip(results, confidences)):
|
|
original_idx = reverse_mapping[i]
|
|
|
|
height, width = rotated_images[original_idx].shape[:2]
|
|
area = height * width
|
|
|
|
average_confidence = conf
|
|
|
|
# set to True to write each cropped image for debugging
|
|
if False:
|
|
save_image = cv2.cvtColor(
|
|
rotated_images[original_idx], cv2.COLOR_RGB2BGR
|
|
)
|
|
filename = f"/config/plate_{original_idx}_{plate}_{area}.jpg"
|
|
cv2.imwrite(filename, save_image)
|
|
|
|
license_plates[original_idx] = plate
|
|
average_confidences[original_idx] = average_confidence
|
|
areas[original_idx] = area
|
|
|
|
return license_plates, average_confidences, areas
|
|
|
|
return [], [], []
|
|
|
|
def resize_image(self, image: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Resize the input image while maintaining the aspect ratio, ensuring dimensions are multiples of 32.
|
|
|
|
Args:
|
|
image (np.ndarray): The input image to resize.
|
|
|
|
Returns:
|
|
np.ndarray: The resized image.
|
|
"""
|
|
h, w = image.shape[:2]
|
|
ratio = min(self.max_size / max(h, w), 1.0)
|
|
resize_h = max(int(round(int(h * ratio) / 32) * 32), 32)
|
|
resize_w = max(int(round(int(w * ratio) / 32) * 32), 32)
|
|
return cv2.resize(image, (resize_w, resize_h))
|
|
|
|
def normalize_image(self, image: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Normalize the input image by subtracting the mean and multiplying by the standard deviation.
|
|
|
|
Args:
|
|
image (np.ndarray): The input image to normalize.
|
|
|
|
Returns:
|
|
np.ndarray: The normalized image, transposed to match the model's expected input format.
|
|
"""
|
|
mean = np.array([123.675, 116.28, 103.53]).reshape(1, -1).astype("float64")
|
|
std = 1 / np.array([58.395, 57.12, 57.375]).reshape(1, -1).astype("float64")
|
|
|
|
image = image.astype("float32")
|
|
cv2.subtract(image, mean, image)
|
|
cv2.multiply(image, std, image)
|
|
return image.transpose((2, 0, 1))[np.newaxis, ...]
|
|
|
|
def boxes_from_bitmap(
|
|
self, output: np.ndarray, mask: np.ndarray, dest_width: int, dest_height: int
|
|
) -> Tuple[np.ndarray, List[float]]:
|
|
"""
|
|
Process the binary mask to extract bounding boxes and associated confidence scores.
|
|
|
|
Args:
|
|
output (np.ndarray): Output confidence map from the model.
|
|
mask (np.ndarray): Binary mask of detected regions.
|
|
dest_width (int): Target width for scaling the box coordinates.
|
|
dest_height (int): Target height for scaling the box coordinates.
|
|
|
|
Returns:
|
|
Tuple[np.ndarray, List[float]]: Array of bounding boxes and list of corresponding scores.
|
|
"""
|
|
|
|
mask = (mask * 255).astype(np.uint8)
|
|
height, width = mask.shape
|
|
outs = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
# handle different return values of findContours between OpenCV versions
|
|
contours = outs[0] if len(outs) == 2 else outs[1]
|
|
|
|
boxes = []
|
|
scores = []
|
|
|
|
for index in range(len(contours)):
|
|
contour = contours[index]
|
|
|
|
# get minimum bounding box (rotated rectangle) around the contour and the smallest side length.
|
|
points, min_side = self.get_min_boxes(contour)
|
|
|
|
if min_side < self.min_size:
|
|
continue
|
|
|
|
points = np.array(points)
|
|
|
|
score = self.box_score(output, contour)
|
|
if self.box_thresh > score:
|
|
continue
|
|
|
|
polygon = Polygon(points)
|
|
distance = polygon.area / polygon.length
|
|
|
|
# Use pyclipper to shrink the polygon slightly based on the computed distance.
|
|
offset = PyclipperOffset()
|
|
offset.AddPath(points, JT_ROUND, ET_CLOSEDPOLYGON)
|
|
points = np.array(offset.Execute(distance * 1.5)).reshape((-1, 1, 2))
|
|
|
|
# get the minimum bounding box around the shrunken polygon.
|
|
box, min_side = self.get_min_boxes(points)
|
|
|
|
if min_side < self.min_size + 2:
|
|
continue
|
|
|
|
box = np.array(box)
|
|
|
|
# normalize and clip box coordinates to fit within the destination image size.
|
|
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
|
box[:, 1] = np.clip(
|
|
np.round(box[:, 1] / height * dest_height), 0, dest_height
|
|
)
|
|
|
|
boxes.append(box.astype("int32"))
|
|
scores.append(score)
|
|
|
|
return np.array(boxes, dtype="int32"), scores
|
|
|
|
@staticmethod
|
|
def get_min_boxes(contour: np.ndarray) -> Tuple[List[Tuple[float, float]], float]:
|
|
"""
|
|
Calculate the minimum bounding box (rotated rectangle) for a given contour.
|
|
|
|
Args:
|
|
contour (np.ndarray): The contour points of the detected shape.
|
|
|
|
Returns:
|
|
Tuple[List[Tuple[float, float]], float]: A list of four points representing the
|
|
corners of the bounding box, and the length of the shortest side.
|
|
"""
|
|
bounding_box = cv2.minAreaRect(contour)
|
|
points = sorted(cv2.boxPoints(bounding_box), key=lambda x: x[0])
|
|
index_1, index_4 = (0, 1) if points[1][1] > points[0][1] else (1, 0)
|
|
index_2, index_3 = (2, 3) if points[3][1] > points[2][1] else (3, 2)
|
|
box = [points[index_1], points[index_2], points[index_3], points[index_4]]
|
|
return box, min(bounding_box[1])
|
|
|
|
@staticmethod
|
|
def box_score(bitmap: np.ndarray, contour: np.ndarray) -> float:
|
|
"""
|
|
Calculate the average score within the bounding box of a contour.
|
|
|
|
Args:
|
|
bitmap (np.ndarray): The output confidence map from the model.
|
|
contour (np.ndarray): The contour of the detected shape.
|
|
|
|
Returns:
|
|
float: The average score of the pixels inside the contour region.
|
|
"""
|
|
h, w = bitmap.shape[:2]
|
|
contour = contour.reshape(-1, 2)
|
|
x1, y1 = np.clip(contour.min(axis=0), 0, [w - 1, h - 1])
|
|
x2, y2 = np.clip(contour.max(axis=0), 0, [w - 1, h - 1])
|
|
mask = np.zeros((y2 - y1 + 1, x2 - x1 + 1), dtype=np.uint8)
|
|
cv2.fillPoly(mask, [contour - [x1, y1]], 1)
|
|
return cv2.mean(bitmap[y1 : y2 + 1, x1 : x2 + 1], mask)[0]
|
|
|
|
@staticmethod
|
|
def expand_box(points: List[Tuple[float, float]]) -> np.ndarray:
|
|
"""
|
|
Expand a polygonal shape slightly by a factor determined by the area-to-perimeter ratio.
|
|
|
|
Args:
|
|
points (List[Tuple[float, float]]): Points of the polygon to expand.
|
|
|
|
Returns:
|
|
np.ndarray: Expanded polygon points.
|
|
"""
|
|
polygon = Polygon(points)
|
|
distance = polygon.area / polygon.length
|
|
offset = PyclipperOffset()
|
|
offset.AddPath(points, JT_ROUND, ET_CLOSEDPOLYGON)
|
|
expanded = np.array(offset.Execute(distance * 1.5)).reshape((-1, 2))
|
|
return expanded
|
|
|
|
def filter_polygon(
|
|
self, points: List[np.ndarray], shape: Tuple[int, int]
|
|
) -> np.ndarray:
|
|
"""
|
|
Filter a set of polygons to include only valid ones that fit within an image shape
|
|
and meet size constraints.
|
|
|
|
Args:
|
|
points (List[np.ndarray]): List of polygons to filter.
|
|
shape (Tuple[int, int]): Shape of the image (height, width).
|
|
|
|
Returns:
|
|
np.ndarray: List of filtered polygons.
|
|
"""
|
|
height, width = shape
|
|
return np.array(
|
|
[
|
|
self.clockwise_order(point)
|
|
for point in points
|
|
if self.is_valid_polygon(point, width, height)
|
|
]
|
|
)
|
|
|
|
@staticmethod
|
|
def is_valid_polygon(point: np.ndarray, width: int, height: int) -> bool:
|
|
"""
|
|
Check if a polygon is valid, meaning it fits within the image bounds
|
|
and has sides of a minimum length.
|
|
|
|
Args:
|
|
point (np.ndarray): The polygon to validate.
|
|
width (int): Image width.
|
|
height (int): Image height.
|
|
|
|
Returns:
|
|
bool: Whether the polygon is valid or not.
|
|
"""
|
|
return (
|
|
point[:, 0].min() >= 0
|
|
and point[:, 0].max() < width
|
|
and point[:, 1].min() >= 0
|
|
and point[:, 1].max() < height
|
|
and np.linalg.norm(point[0] - point[1]) > 3
|
|
and np.linalg.norm(point[0] - point[3]) > 3
|
|
)
|
|
|
|
@staticmethod
|
|
def clockwise_order(point: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Arrange the points of a polygon in clockwise order based on their angular positions
|
|
around the polygon's center.
|
|
|
|
Args:
|
|
point (np.ndarray): Array of points of the polygon.
|
|
|
|
Returns:
|
|
np.ndarray: Points ordered in clockwise direction.
|
|
"""
|
|
center = point.mean(axis=0)
|
|
return point[
|
|
np.argsort(np.arctan2(point[:, 1] - center[1], point[:, 0] - center[0]))
|
|
]
|
|
|
|
@staticmethod
|
|
def sort_polygon(points):
|
|
"""
|
|
Sort polygons based on their position in the image. If polygons are close in vertical
|
|
position (within 10 pixels), sort them by horizontal position.
|
|
|
|
Args:
|
|
points: List of polygons to sort.
|
|
|
|
Returns:
|
|
List: Sorted list of polygons.
|
|
"""
|
|
points.sort(key=lambda x: (x[0][1], x[0][0]))
|
|
for i in range(len(points) - 1):
|
|
for j in range(i, -1, -1):
|
|
if abs(points[j + 1][0][1] - points[j][0][1]) < 10 and (
|
|
points[j + 1][0][0] < points[j][0][0]
|
|
):
|
|
temp = points[j]
|
|
points[j] = points[j + 1]
|
|
points[j + 1] = temp
|
|
else:
|
|
break
|
|
return points
|
|
|
|
@staticmethod
|
|
def zero_pad(image: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Apply zero-padding to an image, ensuring its dimensions are at least 32x32.
|
|
The padding is added only if needed.
|
|
|
|
Args:
|
|
image (np.ndarray): Input image.
|
|
|
|
Returns:
|
|
np.ndarray: Zero-padded image.
|
|
"""
|
|
h, w, c = image.shape
|
|
pad = np.zeros((max(32, h), max(32, w), c), np.uint8)
|
|
pad[:h, :w, :] = image
|
|
return pad
|
|
|
|
@staticmethod
|
|
def _preprocess_classification_image(image: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Preprocess a single image for classification by resizing, normalizing, and padding.
|
|
|
|
This method resizes the input image to a fixed height of 48 pixels while adjusting
|
|
the width dynamically up to a maximum of 192 pixels. The image is then normalized and
|
|
padded to fit the required input dimensions for classification.
|
|
|
|
Args:
|
|
image (np.ndarray): Input image to preprocess.
|
|
|
|
Returns:
|
|
np.ndarray: Preprocessed and padded image.
|
|
"""
|
|
# fixed height of 48, dynamic width up to 192
|
|
input_shape = (3, 48, 192)
|
|
input_c, input_h, input_w = input_shape
|
|
|
|
h, w = image.shape[:2]
|
|
ratio = w / h
|
|
resized_w = min(input_w, math.ceil(input_h * ratio))
|
|
|
|
resized_image = cv2.resize(image, (resized_w, input_h))
|
|
|
|
# handle single-channel images (grayscale) if needed
|
|
if input_c == 1 and resized_image.ndim == 2:
|
|
resized_image = resized_image[np.newaxis, :, :]
|
|
else:
|
|
resized_image = resized_image.transpose((2, 0, 1))
|
|
|
|
# normalize
|
|
resized_image = (resized_image.astype("float32") / 255.0 - 0.5) / 0.5
|
|
|
|
padded_image = np.zeros((input_c, input_h, input_w), dtype=np.float32)
|
|
padded_image[:, :, :resized_w] = resized_image
|
|
|
|
return padded_image
|
|
|
|
def _process_classification_output(
|
|
self, images: List[np.ndarray], outputs: List[np.ndarray]
|
|
) -> Tuple[List[np.ndarray], List[Tuple[str, float]]]:
|
|
"""
|
|
Process the classification model output by matching labels with confidence scores.
|
|
|
|
This method processes the outputs from the classification model and rotates images
|
|
with high confidence of being labeled "180". It ensures that results are mapped to
|
|
the original image order.
|
|
|
|
Args:
|
|
images (List[np.ndarray]): List of input images.
|
|
outputs (List[np.ndarray]): Corresponding model outputs.
|
|
|
|
Returns:
|
|
Tuple[List[np.ndarray], List[Tuple[str, float]]]: A tuple of processed images and
|
|
classification results (label and confidence score).
|
|
"""
|
|
labels = ["0", "180"]
|
|
results = [["", 0.0]] * len(images)
|
|
indices = np.argsort(np.array([x.shape[1] / x.shape[0] for x in images]))
|
|
|
|
outputs = np.stack(outputs)
|
|
|
|
outputs = [
|
|
(labels[idx], outputs[i, idx])
|
|
for i, idx in enumerate(outputs.argmax(axis=1))
|
|
]
|
|
|
|
for i in range(0, len(images), self.batch_size):
|
|
for j in range(len(outputs)):
|
|
label, score = outputs[j]
|
|
results[indices[i + j]] = [label, score]
|
|
if "180" in label and score >= self.lpr_config.threshold:
|
|
images[indices[i + j]] = cv2.rotate(images[indices[i + j]], 1)
|
|
|
|
return images, results
|
|
|
|
def _preprocess_recognition_image(
|
|
self, image: np.ndarray, max_wh_ratio: float
|
|
) -> np.ndarray:
|
|
"""
|
|
Preprocess an image for recognition by dynamically adjusting its width.
|
|
|
|
This method adjusts the width of the image based on the maximum width-to-height ratio
|
|
while keeping the height fixed at 48 pixels. The image is then normalized and padded
|
|
to fit the required input dimensions for recognition.
|
|
|
|
Args:
|
|
image (np.ndarray): Input image to preprocess.
|
|
max_wh_ratio (float): Maximum width-to-height ratio for resizing.
|
|
|
|
Returns:
|
|
np.ndarray: Preprocessed and padded image.
|
|
"""
|
|
# fixed height of 48, dynamic width based on ratio
|
|
input_shape = [3, 48, 320]
|
|
input_h, input_w = input_shape[1], input_shape[2]
|
|
|
|
assert image.shape[2] == input_shape[0], "Unexpected number of image channels."
|
|
|
|
# dynamically adjust input width based on max_wh_ratio
|
|
input_w = int(input_h * max_wh_ratio)
|
|
|
|
# check for model-specific input width
|
|
model_input_w = self.recognition_model.runner.ort.get_inputs()[0].shape[3]
|
|
if isinstance(model_input_w, int) and model_input_w > 0:
|
|
input_w = model_input_w
|
|
|
|
h, w = image.shape[:2]
|
|
aspect_ratio = w / h
|
|
resized_w = min(input_w, math.ceil(input_h * aspect_ratio))
|
|
|
|
resized_image = cv2.resize(image, (resized_w, input_h))
|
|
resized_image = resized_image.transpose((2, 0, 1))
|
|
resized_image = (resized_image.astype("float32") / 255.0 - 0.5) / 0.5
|
|
|
|
padded_image = np.zeros((input_shape[0], input_h, input_w), dtype=np.float32)
|
|
padded_image[:, :, :resized_w] = resized_image
|
|
|
|
return padded_image
|
|
|
|
@staticmethod
|
|
def _crop_license_plate(image: np.ndarray, points: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Crop the license plate from the image using four corner points.
|
|
|
|
This method crops the region containing the license plate by using the perspective
|
|
transformation based on four corner points. If the resulting image is significantly
|
|
taller than wide, the image is rotated to the correct orientation.
|
|
|
|
Args:
|
|
image (np.ndarray): Input image containing the license plate.
|
|
points (np.ndarray): Four corner points defining the plate's position.
|
|
|
|
Returns:
|
|
np.ndarray: Cropped and potentially rotated license plate image.
|
|
"""
|
|
assert len(points) == 4, "shape of points must be 4*2"
|
|
points = points.astype(np.float32)
|
|
crop_width = int(
|
|
max(
|
|
np.linalg.norm(points[0] - points[1]),
|
|
np.linalg.norm(points[2] - points[3]),
|
|
)
|
|
)
|
|
crop_height = int(
|
|
max(
|
|
np.linalg.norm(points[0] - points[3]),
|
|
np.linalg.norm(points[1] - points[2]),
|
|
)
|
|
)
|
|
pts_std = np.float32(
|
|
[[0, 0], [crop_width, 0], [crop_width, crop_height], [0, crop_height]]
|
|
)
|
|
matrix = cv2.getPerspectiveTransform(points, pts_std)
|
|
image = cv2.warpPerspective(
|
|
image,
|
|
matrix,
|
|
(crop_width, crop_height),
|
|
borderMode=cv2.BORDER_REPLICATE,
|
|
flags=cv2.INTER_CUBIC,
|
|
)
|
|
height, width = image.shape[0:2]
|
|
if height * 1.0 / width >= 1.5:
|
|
image = np.rot90(image, k=3)
|
|
return image
|
|
|
|
|
|
class CTCDecoder:
|
|
"""
|
|
A decoder for interpreting the output of a CTC (Connectionist Temporal Classification) model.
|
|
|
|
This decoder converts the model's output probabilities into readable sequences of characters
|
|
while removing duplicates and handling blank tokens. It also calculates the confidence scores
|
|
for each decoded character sequence.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Initialize the CTCDecoder with a list of characters and a character map.
|
|
|
|
The character set includes digits, letters, special characters, and a "blank" token
|
|
(used by the CTC model for decoding purposes). A character map is created to map
|
|
indices to characters.
|
|
"""
|
|
self.characters = [
|
|
"blank",
|
|
"0",
|
|
"1",
|
|
"2",
|
|
"3",
|
|
"4",
|
|
"5",
|
|
"6",
|
|
"7",
|
|
"8",
|
|
"9",
|
|
":",
|
|
";",
|
|
"<",
|
|
"=",
|
|
">",
|
|
"?",
|
|
"@",
|
|
"A",
|
|
"B",
|
|
"C",
|
|
"D",
|
|
"E",
|
|
"F",
|
|
"G",
|
|
"H",
|
|
"I",
|
|
"J",
|
|
"K",
|
|
"L",
|
|
"M",
|
|
"N",
|
|
"O",
|
|
"P",
|
|
"Q",
|
|
"R",
|
|
"S",
|
|
"T",
|
|
"U",
|
|
"V",
|
|
"W",
|
|
"X",
|
|
"Y",
|
|
"Z",
|
|
"[",
|
|
"\\",
|
|
"]",
|
|
"^",
|
|
"_",
|
|
"`",
|
|
"a",
|
|
"b",
|
|
"c",
|
|
"d",
|
|
"e",
|
|
"f",
|
|
"g",
|
|
"h",
|
|
"i",
|
|
"j",
|
|
"k",
|
|
"l",
|
|
"m",
|
|
"n",
|
|
"o",
|
|
"p",
|
|
"q",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"u",
|
|
"v",
|
|
"w",
|
|
"x",
|
|
"y",
|
|
"z",
|
|
"{",
|
|
"|",
|
|
"}",
|
|
"~",
|
|
"!",
|
|
'"',
|
|
"#",
|
|
"$",
|
|
"%",
|
|
"&",
|
|
"'",
|
|
"(",
|
|
")",
|
|
"*",
|
|
"+",
|
|
",",
|
|
"-",
|
|
".",
|
|
"/",
|
|
" ",
|
|
" ",
|
|
]
|
|
self.char_map = {i: char for i, char in enumerate(self.characters)}
|
|
|
|
def __call__(
|
|
self, outputs: List[np.ndarray]
|
|
) -> Tuple[List[str], List[List[float]]]:
|
|
"""
|
|
Decode a batch of model outputs into character sequences and their confidence scores.
|
|
|
|
The method takes the output probability distributions for each time step and uses
|
|
the best path decoding strategy. It then merges repeating characters and ignores
|
|
blank tokens. Confidence scores for each decoded character are also calculated.
|
|
|
|
Args:
|
|
outputs (List[np.ndarray]): A list of model outputs, where each element is
|
|
a probability distribution for each time step.
|
|
|
|
Returns:
|
|
Tuple[List[str], List[List[float]]]: A tuple of decoded character sequences
|
|
and confidence scores for each sequence.
|
|
"""
|
|
results = []
|
|
confidences = []
|
|
for output in outputs:
|
|
seq_log_probs = np.log(output + 1e-8)
|
|
best_path = np.argmax(seq_log_probs, axis=1)
|
|
|
|
merged_path = []
|
|
merged_probs = []
|
|
for t, char_index in enumerate(best_path):
|
|
if char_index != 0 and (t == 0 or char_index != best_path[t - 1]):
|
|
merged_path.append(char_index)
|
|
merged_probs.append(seq_log_probs[t, char_index])
|
|
|
|
result = "".join(self.char_map[idx] for idx in merged_path)
|
|
results.append(result)
|
|
|
|
confidence = np.exp(merged_probs).tolist()
|
|
confidences.append(confidence)
|
|
|
|
return results, confidences
|