mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
162 lines
5.9 KiB
Python
162 lines
5.9 KiB
Python
import datetime
|
|
import collections
|
|
import numpy as np
|
|
import cv2
|
|
import threading
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Function to read labels from text files.
|
|
def ReadLabelFile(file_path):
|
|
with open(file_path, 'r') as f:
|
|
lines = f.readlines()
|
|
ret = {}
|
|
for line in lines:
|
|
pair = line.strip().split(maxsplit=1)
|
|
ret[int(pair[0])] = pair[1].strip()
|
|
return ret
|
|
|
|
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
|
|
# size is larger than longest edge
|
|
size = int(max(xmax-xmin, ymax-ymin)*2)
|
|
# if the size is too big to fit in the frame
|
|
if size > min(frame_shape[0], frame_shape[1]):
|
|
size = min(frame_shape[0], frame_shape[1])
|
|
|
|
# x_offset is midpoint of bounding box minus half the size
|
|
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
|
# if outside the image
|
|
if x_offset < 0:
|
|
x_offset = 0
|
|
elif x_offset > (frame_shape[1]-size):
|
|
x_offset = (frame_shape[1]-size)
|
|
|
|
# y_offset is midpoint of bounding box minus half the size
|
|
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
|
# if outside the image
|
|
if y_offset < 0:
|
|
y_offset = 0
|
|
elif y_offset > (frame_shape[0]-size):
|
|
y_offset = (frame_shape[0]-size)
|
|
|
|
return (size, x_offset, y_offset)
|
|
|
|
def compute_intersection_rectangle(box_a, box_b):
|
|
return {
|
|
'xmin': max(box_a['xmin'], box_b['xmin']),
|
|
'ymin': max(box_a['ymin'], box_b['ymin']),
|
|
'xmax': min(box_a['xmax'], box_b['xmax']),
|
|
'ymax': min(box_a['ymax'], box_b['ymax'])
|
|
}
|
|
|
|
def compute_intersection_over_union(box_a, box_b):
|
|
# determine the (x, y)-coordinates of the intersection rectangle
|
|
intersect = compute_intersection_rectangle(box_a, box_b)
|
|
|
|
# compute the area of intersection rectangle
|
|
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
|
|
|
|
if inter_area == 0:
|
|
return 0.0
|
|
|
|
# compute the area of both the prediction and ground-truth
|
|
# rectangles
|
|
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
|
|
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
|
|
|
|
# compute the intersection over union by taking the intersection
|
|
# area and dividing it by the sum of prediction + ground-truth
|
|
# areas - the interesection area
|
|
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
|
|
|
# return the intersection over union value
|
|
return iou
|
|
|
|
# convert shared memory array into numpy array
|
|
def tonumpyarray(mp_arr):
|
|
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
|
|
|
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
|
if color is None:
|
|
color = COLOR_MAP[label]
|
|
display_text = "{}: {}".format(label, info)
|
|
cv2.rectangle(frame, (x_min, y_min),
|
|
(x_max, y_max),
|
|
color, thickness)
|
|
font_scale = 0.5
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
# get the width and height of the text box
|
|
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
|
|
text_width = size[0][0]
|
|
text_height = size[0][1]
|
|
line_height = text_height + size[1]
|
|
# set the text start position
|
|
if position == 'ul':
|
|
text_offset_x = x_min
|
|
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
|
elif position == 'ur':
|
|
text_offset_x = x_max - (text_width+8)
|
|
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
|
elif position == 'bl':
|
|
text_offset_x = x_min
|
|
text_offset_y = y_max
|
|
elif position == 'br':
|
|
text_offset_x = x_max - (text_width+8)
|
|
text_offset_y = y_max
|
|
# make the coords of the box with a small padding of two pixels
|
|
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
|
|
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
|
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
|
|
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
# List of the strings that is used to add correct label for each box.
|
|
PATH_TO_LABELS = '/label_map.pbtext'
|
|
|
|
LABELS = ReadLabelFile(PATH_TO_LABELS)
|
|
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
|
|
|
COLOR_MAP = {}
|
|
for key, val in LABELS.items():
|
|
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
|
|
|
class QueueMerger():
|
|
def __init__(self, from_queues, to_queue):
|
|
self.from_queues = from_queues
|
|
self.to_queue = to_queue
|
|
self.merge_threads = []
|
|
|
|
def start(self):
|
|
for from_q in self.from_queues:
|
|
self.merge_threads.append(QueueTransfer(from_q,self.to_queue))
|
|
|
|
class QueueTransfer(threading.Thread):
|
|
def __init__(self, from_queue, to_queue):
|
|
threading.Thread.__init__(self)
|
|
self.from_queue = from_queue
|
|
self.to_queue = to_queue
|
|
|
|
def run(self):
|
|
while True:
|
|
self.to_queue.put(self.from_queue.get())
|
|
|
|
class EventsPerSecond:
|
|
def __init__(self, max_events=1000):
|
|
self._start = None
|
|
self._max_events = max_events
|
|
self._timestamps = []
|
|
|
|
def start(self):
|
|
self._start = datetime.datetime.now().timestamp()
|
|
|
|
def update(self):
|
|
self._timestamps.append(datetime.datetime.now().timestamp())
|
|
# truncate the list when it goes 100 over the max_size
|
|
if len(self._timestamps) > self._max_events+100:
|
|
self._timestamps = self._timestamps[(1-self._max_events):]
|
|
|
|
def eps(self, last_n_seconds=10):
|
|
# compute the (approximate) events in the last n seconds
|
|
now = datetime.datetime.now().timestamp()
|
|
seconds = min(now-self._start, last_n_seconds)
|
|
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
|