blakeblackshear.frigate/frigate/detectors/plugins/onnx.py
Nicolas Mowen 36d7eb7caa
Support ONNX model caching (#13780)
* Support model caching

* Cleanup
2024-09-16 18:18:11 -06:00

111 lines
3.6 KiB
Python

import logging
import cv2
import numpy as np
from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import (
BaseDetectorConfig,
ModelTypeEnum,
PixelFormatEnum,
)
logger = logging.getLogger(__name__)
DETECTOR_KEY = "onnx"
class ONNXDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
class ONNXDetector(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: ONNXDetectorConfig):
try:
import onnxruntime as ort
logger.info("ONNX: loaded onnxruntime module")
except ModuleNotFoundError:
logger.error(
"ONNX: module loading failed, need 'pip install onnxruntime'?!?"
)
raise
path = detector_config.model.path
logger.info(f"ONNX: loading {detector_config.model.path}")
providers = ort.get_available_providers()
options = []
for provider in providers:
if provider == "TensorrtExecutionProvider":
options.append(
{
"trt_timing_cache_enable": True,
"trt_timing_cache_path": "/config/model_cache/tensorrt/ort",
"trt_engine_cache_enable": True,
"trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines",
}
)
elif provider == "OpenVINOExecutionProvider":
options.append({"cache_dir": "/config/model_cache/openvino/ort"})
else:
options.append({})
self.model = ort.InferenceSession(
path, providers=providers, provider_options=options
)
self.h = detector_config.model.height
self.w = detector_config.model.width
self.onnx_model_type = detector_config.model.model_type
self.onnx_model_px = detector_config.model.input_pixel_format
path = detector_config.model.path
logger.info(f"ONNX: {path} loaded")
def detect_raw(self, tensor_input):
model_input_name = self.model.get_inputs()[0].name
model_input_shape = self.model.get_inputs()[0].shape
# adjust input shape
if self.onnx_model_type == ModelTypeEnum.yolonas:
tensor_input = cv2.dnn.blobFromImage(
tensor_input[0],
1.0,
(model_input_shape[3], model_input_shape[2]),
None,
swapRB=self.onnx_model_px == PixelFormatEnum.bgr,
).astype(np.uint8)
tensor_output = self.model.run(None, {model_input_name: tensor_input})
if self.onnx_model_type == ModelTypeEnum.yolonas:
predictions = tensor_output[0]
detections = np.zeros((20, 6), np.float32)
for i, prediction in enumerate(predictions):
if i == 20:
break
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
# when running in GPU mode, empty predictions in the output have class_id of -1
if class_id < 0:
break
detections[i] = [
class_id,
confidence,
y_min / self.h,
x_min / self.w,
y_max / self.h,
x_max / self.w,
]
return detections
else:
raise Exception(
f"{self.onnx_model_type} is currently not supported for rocm. See the docs for more info on supported models."
)