mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			86 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| 
 | |
| import numpy as np
 | |
| from pydantic import Field
 | |
| from typing_extensions import Literal
 | |
| 
 | |
| from frigate.detectors.detection_api import DetectionApi
 | |
| from frigate.detectors.detector_config import (
 | |
|     BaseDetectorConfig,
 | |
|     ModelTypeEnum,
 | |
| )
 | |
| from frigate.util.model import get_ort_providers
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| DETECTOR_KEY = "onnx"
 | |
| 
 | |
| 
 | |
| class ONNXDetectorConfig(BaseDetectorConfig):
 | |
|     type: Literal[DETECTOR_KEY]
 | |
|     device: str = Field(default="AUTO", title="Device Type")
 | |
| 
 | |
| 
 | |
| class ONNXDetector(DetectionApi):
 | |
|     type_key = DETECTOR_KEY
 | |
| 
 | |
|     def __init__(self, detector_config: ONNXDetectorConfig):
 | |
|         try:
 | |
|             import onnxruntime as ort
 | |
| 
 | |
|             logger.info("ONNX: loaded onnxruntime module")
 | |
|         except ModuleNotFoundError:
 | |
|             logger.error(
 | |
|                 "ONNX: module loading failed, need 'pip install onnxruntime'?!?"
 | |
|             )
 | |
|             raise
 | |
| 
 | |
|         path = detector_config.model.path
 | |
|         logger.info(f"ONNX: loading {detector_config.model.path}")
 | |
| 
 | |
|         providers, options = get_ort_providers(
 | |
|             detector_config.device == "CPU", detector_config.device
 | |
|         )
 | |
|         self.model = ort.InferenceSession(
 | |
|             path, providers=providers, provider_options=options
 | |
|         )
 | |
| 
 | |
|         self.h = detector_config.model.height
 | |
|         self.w = detector_config.model.width
 | |
|         self.onnx_model_type = detector_config.model.model_type
 | |
|         self.onnx_model_px = detector_config.model.input_pixel_format
 | |
|         self.onnx_model_shape = detector_config.model.input_tensor
 | |
|         path = detector_config.model.path
 | |
| 
 | |
|         logger.info(f"ONNX: {path} loaded")
 | |
| 
 | |
|     def detect_raw(self, tensor_input):
 | |
|         model_input_name = self.model.get_inputs()[0].name
 | |
|         tensor_output = self.model.run(None, {model_input_name: tensor_input})
 | |
| 
 | |
|         if self.onnx_model_type == ModelTypeEnum.yolonas:
 | |
|             predictions = tensor_output[0]
 | |
| 
 | |
|             detections = np.zeros((20, 6), np.float32)
 | |
| 
 | |
|             for i, prediction in enumerate(predictions):
 | |
|                 if i == 20:
 | |
|                     break
 | |
|                 (_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
 | |
|                 # when running in GPU mode, empty predictions in the output have class_id of -1
 | |
|                 if class_id < 0:
 | |
|                     break
 | |
|                 detections[i] = [
 | |
|                     class_id,
 | |
|                     confidence,
 | |
|                     y_min / self.h,
 | |
|                     x_min / self.w,
 | |
|                     y_max / self.h,
 | |
|                     x_max / self.w,
 | |
|                 ]
 | |
|             return detections
 | |
|         else:
 | |
|             raise Exception(
 | |
|                 f"{self.onnx_model_type} is currently not supported for rocm. See the docs for more info on supported models."
 | |
|             )
 |