mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
71 lines
3.3 KiB
Python
71 lines
3.3 KiB
Python
import datetime
|
|
from unittest import TestCase, main
|
|
from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames
|
|
from frigate.util import DictFrameManager, EventsPerSecond, draw_box_with_label
|
|
from frigate.motion import MotionDetector
|
|
from frigate.edgetpu import LocalObjectDetector
|
|
from frigate.objects import ObjectTracker
|
|
import multiprocessing as mp
|
|
import numpy as np
|
|
import cv2
|
|
from frigate.object_processing import COLOR_MAP
|
|
|
|
class FalsePositiveTests(TestCase):
|
|
|
|
def test_back_1594395958_675351_0(self):
|
|
### load in frames
|
|
frame_shape = (1080,1920,3)
|
|
frame_manager = DictFrameManager()
|
|
frame_queue = mp.Queue()
|
|
fps = EventsPerSecond()
|
|
skipped_fps = EventsPerSecond()
|
|
stop_event = mp.Event()
|
|
detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
|
|
ffmpeg_cmd = "ffmpeg -hide_banner -loglevel panic -i /debug/false_positives/back-1595647759.228381-0.mp4 -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
|
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_shape[0]*frame_shape[1]*frame_shape[2])
|
|
capture_frames(ffmpeg_process, "back", frame_shape, frame_manager, frame_queue, 1, fps, skipped_fps, stop_event, detection_frame)
|
|
ffmpeg_process.wait()
|
|
ffmpeg_process.communicate()
|
|
assert(frame_queue.qsize() > 0)
|
|
|
|
### process frames
|
|
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
|
|
mask[:] = 255
|
|
motion_detector = MotionDetector(frame_shape, mask)
|
|
|
|
object_detector = LocalObjectDetector(labels='/labelmap.txt')
|
|
object_tracker = ObjectTracker(10)
|
|
detected_objects_queue = mp.Queue()
|
|
process_fps = EventsPerSecond()
|
|
current_frame = mp.Value('d', 0.0)
|
|
|
|
process_frames("back", frame_queue, frame_shape, frame_manager, motion_detector, object_detector, object_tracker, detected_objects_queue,
|
|
process_fps, current_frame, ['person'], {}, mask, stop_event, exit_on_empty=True)
|
|
assert(detected_objects_queue.qsize() > 0)
|
|
|
|
### check result
|
|
while(not detected_objects_queue.empty()):
|
|
camera_name, frame_time, current_tracked_objects = detected_objects_queue.get()
|
|
|
|
current_frame = frame_manager.get(f"{camera_name}{frame_time}")
|
|
# draw the bounding boxes on the frame
|
|
for obj in current_tracked_objects.values():
|
|
thickness = 2
|
|
color = COLOR_MAP[obj['label']]
|
|
|
|
if obj['frame_time'] != frame_time:
|
|
thickness = 1
|
|
color = (255,0,0)
|
|
|
|
# draw the bounding boxes on the frame
|
|
box = obj['box']
|
|
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
|
# draw the regions on the frame
|
|
region = obj['region']
|
|
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', f"{region[2]-region[0]}", thickness=1, color=(0,255,0))
|
|
|
|
cv2.imwrite(f"/debug/frames/{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main() |