mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-23 19:11:14 +01:00
152 lines
6.5 KiB
Python
152 lines
6.5 KiB
Python
import sys
|
|
import click
|
|
import os
|
|
import datetime
|
|
from unittest import TestCase, main
|
|
from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape
|
|
from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label
|
|
from frigate.motion import MotionDetector
|
|
from frigate.edgetpu import LocalObjectDetector
|
|
from frigate.objects import ObjectTracker
|
|
import multiprocessing as mp
|
|
import numpy as np
|
|
import cv2
|
|
from frigate.object_processing import COLOR_MAP, CameraState
|
|
|
|
class ProcessClip():
|
|
def __init__(self, clip_path, frame_shape, config):
|
|
self.clip_path = clip_path
|
|
self.frame_shape = frame_shape
|
|
self.camera_name = 'camera'
|
|
self.frame_manager = DictFrameManager()
|
|
# self.frame_manager = SharedMemoryFrameManager()
|
|
self.frame_queue = mp.Queue()
|
|
self.detected_objects_queue = mp.Queue()
|
|
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
|
|
|
|
def load_frames(self):
|
|
fps = EventsPerSecond()
|
|
skipped_fps = EventsPerSecond()
|
|
stop_event = mp.Event()
|
|
detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
|
|
current_frame = mp.Value('d', 0.0)
|
|
ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
|
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2])
|
|
capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame)
|
|
ffmpeg_process.wait()
|
|
ffmpeg_process.communicate()
|
|
|
|
def process_frames(self, objects_to_track=['person'], object_filters={}):
|
|
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
|
mask[:] = 255
|
|
motion_detector = MotionDetector(self.frame_shape, mask)
|
|
|
|
object_detector = LocalObjectDetector(labels='/labelmap.txt')
|
|
object_tracker = ObjectTracker(10)
|
|
process_fps = mp.Value('d', 0.0)
|
|
detection_fps = mp.Value('d', 0.0)
|
|
current_frame = mp.Value('d', 0.0)
|
|
stop_event = mp.Event()
|
|
|
|
process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue,
|
|
process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
|
|
|
|
def objects_found(self, debug_path=None):
|
|
obj_detected = False
|
|
top_computed_score = 0.0
|
|
def handle_event(name, obj):
|
|
nonlocal obj_detected
|
|
nonlocal top_computed_score
|
|
if obj['computed_score'] > top_computed_score:
|
|
top_computed_score = obj['computed_score']
|
|
if not obj['false_positive']:
|
|
obj_detected = True
|
|
self.camera_state.on('new', handle_event)
|
|
self.camera_state.on('update', handle_event)
|
|
|
|
while(not self.detected_objects_queue.empty()):
|
|
camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get()
|
|
if not debug_path is None:
|
|
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
|
|
|
|
self.camera_state.update(frame_time, current_tracked_objects)
|
|
for obj in self.camera_state.tracked_objects.values():
|
|
print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}")
|
|
|
|
self.frame_manager.delete(self.camera_state.previous_frame_id)
|
|
|
|
return {
|
|
'object_detected': obj_detected,
|
|
'top_score': top_computed_score
|
|
}
|
|
|
|
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
|
|
current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape)
|
|
# draw the bounding boxes on the frame
|
|
for obj in tracked_objects:
|
|
thickness = 2
|
|
color = (0,0,175)
|
|
|
|
if obj['frame_time'] != frame_time:
|
|
thickness = 1
|
|
color = (255,0,0)
|
|
else:
|
|
color = (255,255,0)
|
|
|
|
# draw the bounding boxes on the frame
|
|
box = obj['box']
|
|
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
|
# draw the regions on the frame
|
|
region = obj['region']
|
|
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
|
|
|
|
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
|
|
|
|
@click.command()
|
|
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
|
|
@click.option("-l", "--label", default='person', help="Label name to detect.")
|
|
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
|
|
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
|
|
def process(path, label, threshold, debug_path):
|
|
clips = []
|
|
if os.path.isdir(path):
|
|
files = os.listdir(path)
|
|
files.sort()
|
|
clips = [os.path.join(path, file) for file in files]
|
|
elif os.path.isfile(path):
|
|
clips.append(path)
|
|
|
|
config = {
|
|
'snapshots': {
|
|
'show_timestamp': False,
|
|
'draw_zones': False
|
|
},
|
|
'zones': {},
|
|
'objects': {
|
|
'track': [label],
|
|
'filters': {
|
|
'person': {
|
|
'threshold': threshold
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
results = []
|
|
for c in clips:
|
|
frame_shape = get_frame_shape(c)
|
|
config['frame_shape'] = frame_shape
|
|
process_clip = ProcessClip(c, frame_shape, config)
|
|
process_clip.load_frames()
|
|
process_clip.process_frames(objects_to_track=config['objects']['track'])
|
|
|
|
results.append((c, process_clip.objects_found(debug_path)))
|
|
|
|
for result in results:
|
|
print(f"{result[0]}: {result[1]}")
|
|
|
|
positive_count = sum(1 for result in results if result[1]['object_detected'])
|
|
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
|
|
|
|
if __name__ == '__main__':
|
|
process() |