blakeblackshear.frigate/docker/main/rootfs/etc/s6-overlay/s6-rc.d/download-models/run
harakas 44d8cdbba1
AMD GPU support with the rocm detector and YOLOv8 pretrained model download (#9762)
* ROCm AMD/GPU based build and detector, WIP

* detectors/rocm: separate yolov8 postprocessing into own function; fix box scaling; use cv2.dnn.blobForImage for preprocessing; assert on required model parameters

* AMD/ROCm: add couple of more ultralytics models; comments

* docker/rocm: make imported model files readable by all

* docker/rocm: readme about running on AMD GPUs

* docker/rocm: updated README

* docker/rocm: updated README

* docker/rocm: updated README

* detectors/rocm: separated preprocessing functions into yolo_utils.py

* detector/plugins: added onnx cpu plugin

* docker/rocm: updated container with limite label sets

* example detectors view

* docker/rocm: updated README.md

* docker/rocm: update README.md

* docker/rocm: do not set HSA_OVERRIDE_GFX_VERSION at all for the general version as the empty value broke rocm

* detectors: simplified/optimized yolov8_postprocess

* detector/yolo_utils: indentation, remove unused variable

* detectors/rocm: default option to conserve cpu usage at the expense of latency

* detectors/yolo_utils: use nms to prefilter overlapping boxes if too many detected

* detectors/edgetpu_tfl: add support for yolov8

* util/download_models: script to download yolov8 model files

* docker/main: add download-models overlay into s6 startup

* detectors/rocm: assume models are in /config/model_cache/yolov8/

* docker/rocm: compile onnx files into mxr files at startup

* switch model download into bash script

* detectors/rocm: automatically override HSA_OVERRIDE_GFX_VERSION for couple of known chipsets

* docs: rocm detector first notes

* typos

* describe builds (harakas temporary)

* docker/rocm: also build a version for gfx1100

* docker/rocm: use cp instead of tar

* docker.rocm: remove README as it is now in detector config

* frigate/detectors: renamed yolov8_preprocess->preprocess, pass input tensor element type

* docker/main: use newer openvino (2023.3.0)

* detectors: implement class aggregation

* update yolov8 model

* add openvino/yolov8 support for label aggregation

* docker: remove pointless s6/timeout-up files

* Revert "detectors: implement class aggregation"

This reverts commit dcfe6bbf6f.

* detectors/openvino: remove class aggregation

* detectors: increase yolov8 postprocessing score trershold to 0.5

* docker/rocm: separate rocm distributed files into its own build stage

* Update object_detectors.md

* updated CODEOWNERS file for rocm

* updated build names for documentation

* Revert "docker/main: use newer openvino (2023.3.0)"

This reverts commit dee95de908.

* reverrted openvino detector

* reverted edgetpu detector

* scratched rocm docs from any mention of edgetpu or openvino

* Update docs/docs/configuration/object_detectors.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* renamed frigate.detectors.yolo_utils.py -> frigate.detectors.util.py

* clarified rocm example performance

* Improved wording and clarified text

* Mentioned rocm detector for AMD GPUs

* applied ruff formating

* applied ruff suggested fixes

* docker/rocm: fix missing argument resulting in larger docker image sizes

* docs/configuration/object_detectors: fix links to yolov8 release files

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2024-02-10 06:41:46 -06:00

35 lines
1.3 KiB
Plaintext
Executable File

#!/command/with-contenv bash
# shellcheck shell=bash
# Download yolov8 models when DOWNLOAD_YOLOV8=1 environment variable is set
set -o errexit -o nounset -o pipefail
MODEL_CACHE_DIR=${MODEL_CACHE_DIR:-"/config/model_cache"}
YOLOV8_DIR="$MODEL_CACHE_DIR/yolov8"
YOLOV8_URL=https://github.com/harakas/models/releases/download/yolov8.1-1.1/yolov8.small.models.tar.gz
YOLOV8_DIGEST=304186b299560fbacc28eac9b9ea02cc2289fe30eb2c0df30109a2529423695c
if [ "$DOWNLOAD_YOLOV8" = "1" ]; then
echo "download-models: DOWNLOAD_YOLOV8=${DOWNLOAD_YOLOV8}, running download"
if ! test -f "${YOLOV8_DIR}/model.fetched"; then
mkdir -p $YOLOV8_DIR
TMP_FILE="${YOLOV8_DIR}/download.tar.gz"
curl --no-progress-meter -L --max-filesize 500M --insecure --output $TMP_FILE "${YOLOV8_URL}"
digest=$(sha256sum $TMP_FILE | awk '{print $1}')
if [ "$digest" = "$YOLOV8_DIGEST" ]; then
echo "download-models: Extracting downloaded file"
cd $YOLOV8_DIR
tar zxf $TMP_FILE
rm $TMP_FILE
touch model.fetched
echo "download-models: Yolov8 download done, files placed into ${YOLOV8_DIR}"
else
echo "download-models: Downloaded file digest does not match: got $digest, expected $YOLOV8_DIGEST"
rm $TMP_FILE
fi
else
echo "download-models: ${YOLOV8_DIR}/model.fetched already present"
fi
fi