blakeblackshear.frigate/frigate/util/image.py
Nicolas Mowen 45e9030358
Round robin SHM management (#15027)
* Output frame name to frames processor

* Finish implementing round robin

* Formatting
2024-11-16 16:00:19 -07:00

932 lines
28 KiB
Python

"""Utilities for creating and manipulating image frames."""
import datetime
import logging
import subprocess as sp
import threading
from abc import ABC, abstractmethod
from multiprocessing import resource_tracker as _mprt
from multiprocessing import shared_memory as _mpshm
from string import printable
from typing import AnyStr, Optional
import cv2
import numpy as np
from unidecode import unidecode
logger = logging.getLogger(__name__)
def transliterate_to_latin(text: str) -> str:
"""
Transliterate a given text to Latin.
This function uses the unidecode library to transliterate the input text to Latin.
It is useful for converting texts with diacritics or non-Latin characters to a
Latin equivalent.
Args:
text (str): The text to be transliterated.
Returns:
str: The transliterated text.
Example:
>>> transliterate_to_latin('frégate')
'fregate'
"""
return unidecode(text)
def on_edge(box, frame_shape):
if (
box[0] == 0
or box[1] == 0
or box[2] == frame_shape[1] - 1
or box[3] == frame_shape[0] - 1
):
return True
def has_better_attr(current_thumb, new_obj, attr_label) -> bool:
max_new_attr = max(
[0]
+ [area(a["box"]) for a in new_obj["attributes"] if a["label"] == attr_label]
)
max_current_attr = max(
[0]
+ [
area(a["box"])
for a in current_thumb["attributes"]
if a["label"] == attr_label
]
)
# if the thumb has a higher scoring attr
return max_new_attr > max_current_attr
def is_better_thumbnail(label, current_thumb, new_obj, frame_shape) -> bool:
# larger is better
# cutoff images are less ideal, but they should also be smaller?
# better scores are obviously better too
# check face on person
if label == "person":
if has_better_attr(current_thumb, new_obj, "face"):
return True
# if the current thumb has a face attr, dont update unless it gets better
if any([a["label"] == "face" for a in current_thumb["attributes"]]):
return False
# check license_plate on car
if label == "car":
if has_better_attr(current_thumb, new_obj, "license_plate"):
return True
# if the current thumb has a license_plate attr, dont update unless it gets better
if any([a["label"] == "license_plate" for a in current_thumb["attributes"]]):
return False
# if the new_thumb is on an edge, and the current thumb is not
if on_edge(new_obj["box"], frame_shape) and not on_edge(
current_thumb["box"], frame_shape
):
return False
# if the score is better by more than 5%
if new_obj["score"] > current_thumb["score"] + 0.05:
return True
# if the area is 10% larger
if new_obj["area"] > current_thumb["area"] * 1.1:
return True
return False
def draw_timestamp(
frame,
timestamp,
timestamp_format,
font_effect=None,
font_thickness=2,
font_color=(255, 255, 255),
position="tl",
):
time_to_show = datetime.datetime.fromtimestamp(timestamp).strftime(timestamp_format)
# calculate a dynamic font size
size = cv2.getTextSize(
time_to_show,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,
thickness=font_thickness,
)
text_width = size[0][0]
desired_size = max(150, 0.33 * frame.shape[1])
font_scale = desired_size / text_width
# calculate the actual size with the dynamic scale
size = cv2.getTextSize(
time_to_show,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
thickness=font_thickness,
)
image_width = frame.shape[1]
image_height = frame.shape[0]
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
if position == "tl":
text_offset_x = 0
text_offset_y = 0 if 0 < line_height else 0 - (line_height + 8)
elif position == "tr":
text_offset_x = image_width - text_width
text_offset_y = 0 if 0 < line_height else 0 - (line_height + 8)
elif position == "bl":
text_offset_x = 0
text_offset_y = image_height - (line_height + 8)
elif position == "br":
text_offset_x = image_width - text_width
text_offset_y = image_height - (line_height + 8)
if font_effect == "solid":
# make the coords of the box with a small padding of two pixels
timestamp_box_coords = np.array(
[
[text_offset_x, text_offset_y],
[text_offset_x + text_width, text_offset_y],
[text_offset_x + text_width, text_offset_y + line_height + 8],
[text_offset_x, text_offset_y + line_height + 8],
]
)
cv2.fillPoly(
frame,
[timestamp_box_coords],
# inverse color of text for background for max. contrast
(255 - font_color[0], 255 - font_color[1], 255 - font_color[2]),
)
elif font_effect == "shadow":
cv2.putText(
frame,
time_to_show,
(text_offset_x + 3, text_offset_y + line_height),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
color=(255 - font_color[0], 255 - font_color[1], 255 - font_color[2]),
thickness=font_thickness,
)
cv2.putText(
frame,
time_to_show,
(text_offset_x, text_offset_y + line_height - 3),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
color=font_color,
thickness=font_thickness,
)
def draw_box_with_label(
frame,
x_min,
y_min,
x_max,
y_max,
label,
info,
thickness=2,
color=None,
position="ul",
):
if color is None:
color = (0, 0, 255)
try:
display_text = transliterate_to_latin("{}: {}".format(label, info))
except Exception:
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
if position == "ul":
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height + 8)
elif position == "ur":
text_offset_x = x_max - (text_width + 8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height + 8)
elif position == "bl":
text_offset_x = x_min
text_offset_y = y_max
elif position == "br":
text_offset_x = x_max - (text_width + 8)
text_offset_y = y_max
# make the coords of the box with a small padding of two pixels
textbox_coords = (
(text_offset_x, text_offset_y),
(text_offset_x + text_width + 2, text_offset_y + line_height),
)
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(
frame,
display_text,
(text_offset_x, text_offset_y + line_height - 3),
font,
fontScale=font_scale,
color=(0, 0, 0),
thickness=2,
)
def is_label_printable(label) -> bool:
"""Check if label is printable."""
return not bool(set(label) - set(printable))
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, model_size, multiplier=2):
# size is the longest edge and divisible by 4
size = int((max(xmax - xmin, ymax - ymin) * multiplier) // 4 * 4)
# dont go any smaller than the model_size
if size < model_size:
size = model_size
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax - xmin) / 2.0 + xmin - size / 2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1] - size):
x_offset = max(0, (frame_shape[1] - size))
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax - ymin) / 2.0 + ymin - size / 2.0)
# # if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0] - size):
y_offset = max(0, (frame_shape[0] - size))
return (x_offset, y_offset, x_offset + size, y_offset + size)
def calculate_16_9_crop(frame_shape, xmin, ymin, xmax, ymax, multiplier=1.25):
min_size = 200
# size is the longest edge and divisible by 4
x_size = int((xmax - xmin) * multiplier)
if x_size < min_size:
x_size = min_size
y_size = int((ymax - ymin) * multiplier)
if y_size < min_size:
y_size = min_size
if frame_shape[1] / frame_shape[0] > 16 / 9 and x_size / y_size > 4:
return None
# calculate 16x9 using height
aspect_y_size = int(9 / 16 * x_size)
# if 16:9 by height is too small
if aspect_y_size < y_size or aspect_y_size > frame_shape[0]:
x_size = int((16 / 9) * y_size) // 4 * 4
if x_size / y_size > 1.8:
return None
else:
y_size = aspect_y_size // 4 * 4
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax - xmin) / 2.0 + xmin - x_size / 2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1] - x_size):
x_offset = max(0, (frame_shape[1] - x_size))
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax - ymin) / 2.0 + ymin - y_size / 2.0)
# # if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0] - y_size):
y_offset = max(0, (frame_shape[0] - y_size))
return (x_offset, y_offset, x_offset + x_size, y_offset + y_size)
def get_yuv_crop(frame_shape, crop):
# crop should be (x1,y1,x2,y2)
frame_height = frame_shape[0] // 3 * 2
frame_width = frame_shape[1]
# compute the width/height of the uv channels
uv_width = frame_width // 2 # width of the uv channels
uv_height = frame_height // 4 # height of the uv channels
# compute the offset for upper left corner of the uv channels
uv_x_offset = crop[0] // 2 # x offset of the uv channels
uv_y_offset = crop[1] // 4 # y offset of the uv channels
# compute the width/height of the uv crops
uv_crop_width = (crop[2] - crop[0]) // 2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1]) // 4 # height of the cropped uv channels
# ensure crop dimensions are multiples of 2 and 4
y = (crop[0], crop[1], crop[0] + uv_crop_width * 2, crop[1] + uv_crop_height * 4)
u1 = (
0 + uv_x_offset,
frame_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height,
)
u2 = (
uv_width + uv_x_offset,
frame_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height,
)
v1 = (
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height,
)
v2 = (
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height,
)
return y, u1, u2, v1, v2
def yuv_crop_and_resize(frame, region, height=None):
# Crops and resizes a YUV frame while maintaining aspect ratio
# https://stackoverflow.com/a/57022634
height = frame.shape[0] // 3 * 2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
uv_channel_x_offset = y_channel_x_offset // 2
uv_channel_y_offset = y_channel_y_offset // 4
# create the yuv region frame
# make sure the size is a multiple of 4
# TODO: this should be based on the size after resize now
size = (region[3] - region[1]) // 4 * 4
yuv_cropped_frame = np.zeros((size + size // 2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size, 0:size] = 16
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset : y_channel_y_offset + y[3] - y[1],
y_channel_x_offset : y_channel_x_offset + y[2] - y[0],
] = frame[y[1] : y[3], y[0] : y[2]]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset : size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset : 0 + uv_channel_x_offset + uv_crop_width,
] = frame[u1[1] : u1[3], u1[0] : u1[2]]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset : size + uv_channel_y_offset + uv_crop_height,
size // 2 + uv_channel_x_offset : size // 2
+ uv_channel_x_offset
+ uv_crop_width,
] = frame[u2[1] : u2[3], u2[0] : u2[2]]
# copy v1
yuv_cropped_frame[
size + size // 4 + uv_channel_y_offset : size
+ size // 4
+ uv_channel_y_offset
+ uv_crop_height,
0 + uv_channel_x_offset : 0 + uv_channel_x_offset + uv_crop_width,
] = frame[v1[1] : v1[3], v1[0] : v1[2]]
# copy v2
yuv_cropped_frame[
size + size // 4 + uv_channel_y_offset : size
+ size // 4
+ uv_channel_y_offset
+ uv_crop_height,
size // 2 + uv_channel_x_offset : size // 2
+ uv_channel_x_offset
+ uv_crop_width,
] = frame[v2[1] : v2[3], v2[0] : v2[2]]
return yuv_cropped_frame
def yuv_to_3_channel_yuv(yuv_frame):
height = yuv_frame.shape[0] // 3 * 2
width = yuv_frame.shape[1]
# flatten the image into array
yuv_data = yuv_frame.ravel()
# create a numpy array to hold all the 3 channel yuv data
all_yuv_data = np.empty((height, width, 3), dtype=np.uint8)
y_count = height * width
uv_count = y_count // 4
# copy the y_channel
all_yuv_data[:, :, 0] = yuv_data[0:y_count].reshape((height, width))
# copy the u channel doubling each dimension
all_yuv_data[:, :, 1] = np.repeat(
np.reshape(
np.repeat(yuv_data[y_count : y_count + uv_count], repeats=2, axis=0),
(height // 2, width),
),
repeats=2,
axis=0,
)
# copy the v channel doubling each dimension
all_yuv_data[:, :, 2] = np.repeat(
np.reshape(
np.repeat(
yuv_data[y_count + uv_count : y_count + uv_count + uv_count],
repeats=2,
axis=0,
),
(height // 2, width),
),
repeats=2,
axis=0,
)
return all_yuv_data
def copy_yuv_to_position(
destination_frame,
destination_offset,
destination_shape,
source_frame=None,
source_channel_dim=None,
interpolation=cv2.INTER_LINEAR,
):
# get the coordinates of the channels for this position in the layout
y, u1, u2, v1, v2 = get_yuv_crop(
destination_frame.shape,
(
destination_offset[1],
destination_offset[0],
destination_offset[1] + destination_shape[1],
destination_offset[0] + destination_shape[0],
),
)
# clear y
destination_frame[
y[1] : y[3],
y[0] : y[2],
] = 16
# clear u1
destination_frame[u1[1] : u1[3], u1[0] : u1[2]] = 128
# clear u2
destination_frame[u2[1] : u2[3], u2[0] : u2[2]] = 128
# clear v1
destination_frame[v1[1] : v1[3], v1[0] : v1[2]] = 128
# clear v2
destination_frame[v2[1] : v2[3], v2[0] : v2[2]] = 128
if source_frame is not None:
# calculate the resized frame, maintaining the aspect ratio
source_aspect_ratio = source_frame.shape[1] / (source_frame.shape[0] // 3 * 2)
dest_aspect_ratio = destination_shape[1] / destination_shape[0]
if source_aspect_ratio <= dest_aspect_ratio:
y_resize_height = int(destination_shape[0] // 4 * 4)
y_resize_width = int((y_resize_height * source_aspect_ratio) // 4 * 4)
else:
y_resize_width = int(destination_shape[1] // 4 * 4)
y_resize_height = int((y_resize_width / source_aspect_ratio) // 4 * 4)
uv_resize_width = int(y_resize_width // 2)
uv_resize_height = int(y_resize_height // 4)
y_y_offset = int((destination_shape[0] - y_resize_height) / 4 // 4 * 4)
y_x_offset = int((destination_shape[1] - y_resize_width) / 2 // 4 * 4)
uv_y_offset = y_y_offset // 4
uv_x_offset = y_x_offset // 2
# resize/copy y channel
destination_frame[
y[1] + y_y_offset : y[1] + y_y_offset + y_resize_height,
y[0] + y_x_offset : y[0] + y_x_offset + y_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["y"][1] : source_channel_dim["y"][3],
source_channel_dim["y"][0] : source_channel_dim["y"][2],
],
dsize=(y_resize_width, y_resize_height),
interpolation=interpolation,
)
# resize/copy u1
destination_frame[
u1[1] + uv_y_offset : u1[1] + uv_y_offset + uv_resize_height,
u1[0] + uv_x_offset : u1[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["u1"][1] : source_channel_dim["u1"][3],
source_channel_dim["u1"][0] : source_channel_dim["u1"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy u2
destination_frame[
u2[1] + uv_y_offset : u2[1] + uv_y_offset + uv_resize_height,
u2[0] + uv_x_offset : u2[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["u2"][1] : source_channel_dim["u2"][3],
source_channel_dim["u2"][0] : source_channel_dim["u2"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy v1
destination_frame[
v1[1] + uv_y_offset : v1[1] + uv_y_offset + uv_resize_height,
v1[0] + uv_x_offset : v1[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["v1"][1] : source_channel_dim["v1"][3],
source_channel_dim["v1"][0] : source_channel_dim["v1"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy v2
destination_frame[
v2[1] + uv_y_offset : v2[1] + uv_y_offset + uv_resize_height,
v2[0] + uv_x_offset : v2[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["v2"][1] : source_channel_dim["v2"][3],
source_channel_dim["v2"][0] : source_channel_dim["v2"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
def yuv_region_2_yuv(frame, region):
try:
# TODO: does this copy the numpy array?
yuv_cropped_frame = yuv_crop_and_resize(frame, region)
return yuv_to_3_channel_yuv(yuv_cropped_frame)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def yuv_region_2_rgb(frame, region):
try:
# TODO: does this copy the numpy array?
yuv_cropped_frame = yuv_crop_and_resize(frame, region)
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def yuv_region_2_bgr(frame, region):
try:
yuv_cropped_frame = yuv_crop_and_resize(frame, region)
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2BGR_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def intersection(box_a, box_b) -> Optional[list[int]]:
"""Return intersection box or None if boxes do not intersect."""
if (
box_a[2] < box_b[0]
or box_a[0] > box_b[2]
or box_a[1] > box_b[3]
or box_a[3] < box_b[1]
):
return None
return (
max(box_a[0], box_b[0]),
max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]),
min(box_a[3], box_b[3]),
)
def area(box):
return (box[2] - box[0] + 1) * (box[3] - box[1] + 1)
def intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = intersection(box_a, box_b)
if intersect is None:
return 0.0
# compute the area of intersection rectangle
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(
0, intersect[3] - intersect[1] + 1
)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the intersection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
def clipped(obj, frame_shape):
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
box = obj[2]
region = obj[5]
if (
(region[0] > 5 and box[0] - region[0] <= 5)
or (region[1] > 5 and box[1] - region[1] <= 5)
or (frame_shape[1] - region[2] > 5 and region[2] - box[2] <= 5)
or (frame_shape[0] - region[3] > 5 and region[3] - box[3] <= 5)
):
return True
else:
return False
class FrameManager(ABC):
@abstractmethod
def create(self, name: str, size: int) -> AnyStr:
pass
@abstractmethod
def write(self, name: str) -> memoryview:
pass
@abstractmethod
def get(self, name: str, timeout_ms: int = 0):
pass
@abstractmethod
def close(self, name: str):
pass
@abstractmethod
def delete(self, name: str):
pass
@abstractmethod
def cleanup(self):
pass
class UntrackedSharedMemory(_mpshm.SharedMemory):
# https://github.com/python/cpython/issues/82300#issuecomment-2169035092
__lock = threading.Lock()
def __init__(
self,
name: Optional[str] = None,
create: bool = False,
size: int = 0,
*,
track: bool = False,
) -> None:
self._track = track
# if tracking, normal init will suffice
if track:
return super().__init__(name=name, create=create, size=size)
# lock so that other threads don't attempt to use the
# register function during this time
with self.__lock:
# temporarily disable registration during initialization
orig_register = _mprt.register
_mprt.register = self.__tmp_register
# initialize; ensure original register function is
# re-instated
try:
super().__init__(name=name, create=create, size=size)
finally:
_mprt.register = orig_register
@staticmethod
def __tmp_register(*args, **kwargs) -> None:
return
def unlink(self) -> None:
if _mpshm._USE_POSIX and self._name:
_mpshm._posixshmem.shm_unlink(self._name)
if self._track:
_mprt.unregister(self._name, "shared_memory")
class SharedMemoryFrameManager(FrameManager):
def __init__(self):
self.shm_store: dict[str, UntrackedSharedMemory] = {}
def create(self, name: str, size) -> AnyStr:
shm = UntrackedSharedMemory(
name=name,
create=True,
size=size,
)
self.shm_store[name] = shm
return shm.buf
def write(self, name: str) -> memoryview:
try:
if name in self.shm_store:
shm = self.shm_store[name]
else:
shm = UntrackedSharedMemory(name=name)
self.shm_store[name] = shm
return shm.buf
except FileNotFoundError:
logger.info(f"the file {name} not found")
return None
def get(self, name: str, shape) -> Optional[np.ndarray]:
try:
if name in self.shm_store:
shm = self.shm_store[name]
else:
shm = UntrackedSharedMemory(name=name)
self.shm_store[name] = shm
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
except FileNotFoundError:
return None
def close(self, name: str):
if name in self.shm_store:
self.shm_store[name].close()
del self.shm_store[name]
def delete(self, name: str):
if name in self.shm_store:
self.shm_store[name].close()
try:
self.shm_store[name].unlink()
except FileNotFoundError:
pass
del self.shm_store[name]
else:
try:
shm = UntrackedSharedMemory(name=name)
shm.close()
shm.unlink()
except FileNotFoundError:
pass
def cleanup(self) -> None:
for shm in self.shm_store.values():
shm.close()
try:
shm.unlink()
except FileNotFoundError:
pass
def create_mask(frame_shape, mask):
mask_img = np.zeros(frame_shape, np.uint8)
mask_img[:] = 255
if isinstance(mask, list):
for m in mask:
add_mask(m, mask_img)
elif isinstance(mask, str):
add_mask(mask, mask_img)
return mask_img
def add_mask(mask: str, mask_img: np.ndarray):
points = mask.split(",")
# masks and zones are saved as relative coordinates
# we know if any points are > 1 then it is using the
# old native resolution coordinates
if any(x > "1.0" for x in points):
raise Exception("add mask expects relative coordinates only")
contour = np.array(
[
[
int(float(points[i]) * mask_img.shape[1]),
int(float(points[i + 1]) * mask_img.shape[0]),
]
for i in range(0, len(points), 2)
]
)
cv2.fillPoly(mask_img, pts=[contour], color=(0))
def get_image_from_recording(
ffmpeg, # Ffmpeg Config
file_path: str,
relative_frame_time: float,
codec: str,
height: Optional[int] = None,
) -> Optional[any]:
"""retrieve a frame from given time in recording file."""
ffmpeg_cmd = [
ffmpeg.ffmpeg_path,
"-hide_banner",
"-loglevel",
"warning",
"-ss",
f"00:00:{relative_frame_time}",
"-i",
file_path,
"-frames:v",
"1",
"-c:v",
codec,
"-f",
"image2pipe",
"-",
]
if height is not None:
ffmpeg_cmd.insert(-3, "-vf")
ffmpeg_cmd.insert(-3, f"scale=-1:{height}")
process = sp.run(
ffmpeg_cmd,
capture_output=True,
)
if process.returncode == 0:
return process.stdout
else:
return None