mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-16 00:09:14 +01:00
4e25bebdd0
* Add input type for dtype * Add ability to manually enable TRT execution provider * Formatting
86 lines
2.8 KiB
Python
86 lines
2.8 KiB
Python
import logging
|
|
|
|
import numpy as np
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import (
|
|
BaseDetectorConfig,
|
|
ModelTypeEnum,
|
|
)
|
|
from frigate.util.model import get_ort_providers
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "onnx"
|
|
|
|
|
|
class ONNXDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
device: str = Field(default="AUTO", title="Device Type")
|
|
|
|
|
|
class ONNXDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: ONNXDetectorConfig):
|
|
try:
|
|
import onnxruntime as ort
|
|
|
|
logger.info("ONNX: loaded onnxruntime module")
|
|
except ModuleNotFoundError:
|
|
logger.error(
|
|
"ONNX: module loading failed, need 'pip install onnxruntime'?!?"
|
|
)
|
|
raise
|
|
|
|
path = detector_config.model.path
|
|
logger.info(f"ONNX: loading {detector_config.model.path}")
|
|
|
|
providers, options = get_ort_providers(
|
|
detector_config.device == "CPU", detector_config.device
|
|
)
|
|
self.model = ort.InferenceSession(
|
|
path, providers=providers, provider_options=options
|
|
)
|
|
|
|
self.h = detector_config.model.height
|
|
self.w = detector_config.model.width
|
|
self.onnx_model_type = detector_config.model.model_type
|
|
self.onnx_model_px = detector_config.model.input_pixel_format
|
|
self.onnx_model_shape = detector_config.model.input_tensor
|
|
path = detector_config.model.path
|
|
|
|
logger.info(f"ONNX: {path} loaded")
|
|
|
|
def detect_raw(self, tensor_input: np.ndarray):
|
|
model_input_name = self.model.get_inputs()[0].name
|
|
tensor_output = self.model.run(None, {model_input_name: tensor_input})
|
|
|
|
if self.onnx_model_type == ModelTypeEnum.yolonas:
|
|
predictions = tensor_output[0]
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
for i, prediction in enumerate(predictions):
|
|
if i == 20:
|
|
break
|
|
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
|
|
# when running in GPU mode, empty predictions in the output have class_id of -1
|
|
if class_id < 0:
|
|
break
|
|
detections[i] = [
|
|
class_id,
|
|
confidence,
|
|
y_min / self.h,
|
|
x_min / self.w,
|
|
y_max / self.h,
|
|
x_max / self.w,
|
|
]
|
|
return detections
|
|
else:
|
|
raise Exception(
|
|
f"{self.onnx_model_type} is currently not supported for rocm. See the docs for more info on supported models."
|
|
)
|