blakeblackshear.frigate/frigate/api/classification.py
Martin Weinelt 4d4d54d030
Fix various typing issues (#18187)
* Fix the `Any` typing hint treewide

There has been confusion between the Any type[1] and the any function[2]
in typing hints.

[1] https://docs.python.org/3/library/typing.html#typing.Any
[2] https://docs.python.org/3/library/functions.html#any

* Fix typing for various frame_shape members

Frame shapes are most likely defined by height and width, so a single int
cannot express that.

* Wrap gpu stats functions in Optional[]

These can return `None`, so they need to be `Type | None`, which is what
`Optional` expresses very nicely.

* Fix return type in get_latest_segment_datetime

Returns a datetime object, not an integer.

* Make the return type of FrameManager.write optional

This is necessary since the SharedMemoryFrameManager.write function can
return None.

* Fix total_seconds() return type in get_tz_modifiers

The function returns a float, not an int.

https://docs.python.org/3/library/datetime.html#datetime.timedelta.total_seconds

* Account for floating point results in to_relative_box

Because the function uses division the return types may either be int or
float.

* Resolve ruff deprecation warning

The config has been split into formatter and linter, and the global
options are deprecated.
2025-05-13 08:27:20 -06:00

369 lines
11 KiB
Python

"""Object classification APIs."""
import datetime
import logging
import os
import shutil
from typing import Any
import cv2
from fastapi import APIRouter, Depends, Request, UploadFile
from fastapi.responses import JSONResponse
from pathvalidate import sanitize_filename
from peewee import DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.api.auth import require_role
from frigate.api.defs.request.classification_body import RenameFaceBody
from frigate.api.defs.tags import Tags
from frigate.config.camera import DetectConfig
from frigate.const import FACE_DIR
from frigate.embeddings import EmbeddingsContext
from frigate.models import Event
from frigate.util.path import get_event_snapshot
logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.events])
@router.get("/faces")
def get_faces():
face_dict: dict[str, list[str]] = {}
if not os.path.exists(FACE_DIR):
return JSONResponse(status_code=200, content={})
for name in os.listdir(FACE_DIR):
face_dir = os.path.join(FACE_DIR, name)
if not os.path.isdir(face_dir):
continue
face_dict[name] = []
for file in filter(
lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))),
os.listdir(face_dir),
):
face_dict[name].append(file)
return JSONResponse(status_code=200, content=face_dict)
@router.post("/faces/reprocess", dependencies=[Depends(require_role(["admin"]))])
def reclassify_face(request: Request, body: dict = None):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
json: dict[str, Any] = body or {}
training_file = os.path.join(
FACE_DIR, f"train/{sanitize_filename(json.get('training_file', ''))}"
)
if not training_file or not os.path.isfile(training_file):
return JSONResponse(
content=(
{
"success": False,
"message": f"Invalid filename or no file exists: {training_file}",
}
),
status_code=404,
)
context: EmbeddingsContext = request.app.embeddings
response = context.reprocess_face(training_file)
return JSONResponse(
content=response,
status_code=200,
)
@router.post("/faces/train/{name}/classify")
def train_face(request: Request, name: str, body: dict = None):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
json: dict[str, Any] = body or {}
training_file_name = sanitize_filename(json.get("training_file", ""))
training_file = os.path.join(FACE_DIR, f"train/{training_file_name}")
event_id = json.get("event_id")
if not training_file_name and not event_id:
return JSONResponse(
content=(
{
"success": False,
"message": "A training file or event_id must be passed.",
}
),
status_code=400,
)
if training_file_name and not os.path.isfile(training_file):
return JSONResponse(
content=(
{
"success": False,
"message": f"Invalid filename or no file exists: {training_file_name}",
}
),
status_code=404,
)
sanitized_name = sanitize_filename(name)
new_name = f"{sanitized_name}-{datetime.datetime.now().timestamp()}.webp"
new_file_folder = os.path.join(FACE_DIR, f"{sanitized_name}")
if not os.path.exists(new_file_folder):
os.mkdir(new_file_folder)
if training_file_name:
shutil.move(training_file, os.path.join(new_file_folder, new_name))
else:
try:
event: Event = Event.get(Event.id == event_id)
except DoesNotExist:
return JSONResponse(
content=(
{
"success": False,
"message": f"Invalid event_id or no event exists: {event_id}",
}
),
status_code=404,
)
snapshot = get_event_snapshot(event)
face_box = event.data["attributes"][0]["box"]
detect_config: DetectConfig = request.app.frigate_config.cameras[
event.camera
].detect
# crop onto the face box minus the bounding box itself
x1 = int(face_box[0] * detect_config.width) + 2
y1 = int(face_box[1] * detect_config.height) + 2
x2 = x1 + int(face_box[2] * detect_config.width) - 4
y2 = y1 + int(face_box[3] * detect_config.height) - 4
face = snapshot[y1:y2, x1:x2]
cv2.imwrite(os.path.join(new_file_folder, new_name), face)
context: EmbeddingsContext = request.app.embeddings
context.clear_face_classifier()
return JSONResponse(
content=(
{
"success": True,
"message": f"Successfully saved {training_file_name} as {new_name}.",
}
),
status_code=200,
)
@router.post("/faces/{name}/create", dependencies=[Depends(require_role(["admin"]))])
async def create_face(request: Request, name: str):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
os.makedirs(
os.path.join(FACE_DIR, sanitize_filename(name.replace(" ", "_"))), exist_ok=True
)
return JSONResponse(
status_code=200,
content={"success": False, "message": "Successfully created face folder."},
)
@router.post("/faces/{name}/register", dependencies=[Depends(require_role(["admin"]))])
async def register_face(request: Request, name: str, file: UploadFile):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
context: EmbeddingsContext = request.app.embeddings
result = context.register_face(name, await file.read())
if not isinstance(result, dict):
return JSONResponse(
status_code=500,
content={
"success": False,
"message": "Could not process request. Try restarting Frigate.",
},
)
return JSONResponse(
status_code=200 if result.get("success", True) else 400,
content=result,
)
@router.post("/faces/recognize")
async def recognize_face(request: Request, file: UploadFile):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
context: EmbeddingsContext = request.app.embeddings
result = context.recognize_face(await file.read())
if not isinstance(result, dict):
return JSONResponse(
status_code=500,
content={
"success": False,
"message": "Could not process request. Try restarting Frigate.",
},
)
return JSONResponse(
status_code=200 if result.get("success", True) else 400,
content=result,
)
@router.post("/faces/{name}/delete", dependencies=[Depends(require_role(["admin"]))])
def deregister_faces(request: Request, name: str, body: dict = None):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
json: dict[str, Any] = body or {}
list_of_ids = json.get("ids", "")
context: EmbeddingsContext = request.app.embeddings
context.delete_face_ids(
name, map(lambda file: sanitize_filename(file), list_of_ids)
)
return JSONResponse(
content=({"success": True, "message": "Successfully deleted faces."}),
status_code=200,
)
@router.put("/faces/{old_name}/rename", dependencies=[Depends(require_role(["admin"]))])
def rename_face(request: Request, old_name: str, body: RenameFaceBody):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
context: EmbeddingsContext = request.app.embeddings
try:
context.rename_face(old_name, body.new_name)
return JSONResponse(
content={
"success": True,
"message": f"Successfully renamed face to {body.new_name}.",
},
status_code=200,
)
except ValueError as e:
logger.error(e)
return JSONResponse(
status_code=400,
content={
"message": "Error renaming face. Check Frigate logs.",
"success": False,
},
)
@router.put("/lpr/reprocess")
def reprocess_license_plate(request: Request, event_id: str):
if not request.app.frigate_config.lpr.enabled:
message = "License plate recognition is not enabled."
logger.error(message)
return JSONResponse(
content=(
{
"success": False,
"message": message,
}
),
status_code=400,
)
try:
event = Event.get(Event.id == event_id)
except DoesNotExist:
message = f"Event {event_id} not found"
logger.error(message)
return JSONResponse(
content=({"success": False, "message": message}), status_code=404
)
context: EmbeddingsContext = request.app.embeddings
response = context.reprocess_plate(model_to_dict(event))
return JSONResponse(
content=response,
status_code=200,
)
@router.put("/reindex", dependencies=[Depends(require_role(["admin"]))])
def reindex_embeddings(request: Request):
if not request.app.frigate_config.semantic_search.enabled:
message = (
"Cannot reindex tracked object embeddings, Semantic Search is not enabled."
)
logger.error(message)
return JSONResponse(
content=(
{
"success": False,
"message": message,
}
),
status_code=400,
)
context: EmbeddingsContext = request.app.embeddings
response = context.reindex_embeddings()
if response == "started":
return JSONResponse(
content={
"success": True,
"message": "Embeddings reindexing has started.",
},
status_code=202, # 202 Accepted
)
elif response == "in_progress":
return JSONResponse(
content={
"success": False,
"message": "Embeddings reindexing is already in progress.",
},
status_code=409, # 409 Conflict
)
else:
return JSONResponse(
content={
"success": False,
"message": "Failed to start reindexing.",
},
status_code=500,
)