mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-21 00:06:44 +01:00
8b6e3a0d37
* Fix region when no data in grid * Make comment more clear
547 lines
18 KiB
Python
547 lines
18 KiB
Python
"""Utils for reading and writing object detection data."""
|
|
|
|
import datetime
|
|
import logging
|
|
import math
|
|
from collections import defaultdict
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from peewee import DoesNotExist
|
|
|
|
from frigate.config import DetectConfig, ModelConfig
|
|
from frigate.const import LABEL_CONSOLIDATION_DEFAULT, LABEL_CONSOLIDATION_MAP
|
|
from frigate.detectors.detector_config import PixelFormatEnum
|
|
from frigate.models import Event, Regions, Timeline
|
|
from frigate.util.image import (
|
|
area,
|
|
calculate_region,
|
|
clipped,
|
|
intersection,
|
|
intersection_over_union,
|
|
yuv_region_2_bgr,
|
|
yuv_region_2_rgb,
|
|
yuv_region_2_yuv,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
GRID_SIZE = 8
|
|
|
|
|
|
def get_camera_regions_grid(
|
|
name: str, detect: DetectConfig
|
|
) -> list[list[dict[str, any]]]:
|
|
"""Build a grid of expected region sizes for a camera."""
|
|
# get grid from db if available
|
|
try:
|
|
regions: Regions = Regions.select().where(Regions.camera == name).get()
|
|
grid = regions.grid
|
|
last_update = regions.last_update
|
|
except DoesNotExist:
|
|
grid = []
|
|
for x in range(GRID_SIZE):
|
|
row = []
|
|
for y in range(GRID_SIZE):
|
|
row.append({"sizes": []})
|
|
grid.append(row)
|
|
last_update = 0
|
|
|
|
# get events for timeline entries
|
|
events = (
|
|
Event.select(Event.id)
|
|
.where(Event.camera == name)
|
|
.where((Event.false_positive == None) | (Event.false_positive == False))
|
|
.where(Event.start_time > last_update)
|
|
)
|
|
valid_event_ids = [e["id"] for e in events.dicts()]
|
|
logger.debug(f"Found {len(valid_event_ids)} new events for {name}")
|
|
|
|
# no new events, return as is
|
|
if not valid_event_ids:
|
|
return grid
|
|
|
|
new_update = datetime.datetime.now().timestamp()
|
|
timeline = (
|
|
Timeline.select(
|
|
*[
|
|
Timeline.camera,
|
|
Timeline.source,
|
|
Timeline.data,
|
|
]
|
|
)
|
|
.where(Timeline.source_id << valid_event_ids)
|
|
.limit(10000)
|
|
.dicts()
|
|
)
|
|
|
|
logger.debug(f"Found {len(timeline)} new entries for {name}")
|
|
|
|
width = detect.width
|
|
height = detect.height
|
|
|
|
for t in timeline:
|
|
if t.get("source") != "tracked_object":
|
|
continue
|
|
|
|
box = t["data"]["box"]
|
|
|
|
# calculate centroid position
|
|
x = box[0] + (box[2] / 2)
|
|
y = box[1] + (box[3] / 2)
|
|
|
|
x_pos = int(x * GRID_SIZE)
|
|
y_pos = int(y * GRID_SIZE)
|
|
|
|
calculated_region = calculate_region(
|
|
(height, width),
|
|
box[0] * width,
|
|
box[1] * height,
|
|
(box[0] + box[2]) * width,
|
|
(box[1] + box[3]) * height,
|
|
320,
|
|
1.35,
|
|
)
|
|
# save width of region to grid as relative
|
|
grid[x_pos][y_pos]["sizes"].append(
|
|
(calculated_region[2] - calculated_region[0]) / width
|
|
)
|
|
|
|
for x in range(GRID_SIZE):
|
|
for y in range(GRID_SIZE):
|
|
cell = grid[x][y]
|
|
|
|
if len(cell["sizes"]) == 0:
|
|
continue
|
|
|
|
std_dev = np.std(cell["sizes"])
|
|
mean = np.mean(cell["sizes"])
|
|
logger.debug(f"std dev: {std_dev} mean: {mean}")
|
|
cell["x"] = x
|
|
cell["y"] = y
|
|
cell["std_dev"] = std_dev
|
|
cell["mean"] = mean
|
|
|
|
# update db with new grid
|
|
region = {
|
|
Regions.camera: name,
|
|
Regions.grid: grid,
|
|
Regions.last_update: new_update,
|
|
}
|
|
(
|
|
Regions.insert(region)
|
|
.on_conflict(
|
|
conflict_target=[Regions.camera],
|
|
update=region,
|
|
)
|
|
.execute()
|
|
)
|
|
|
|
return grid
|
|
|
|
|
|
def get_cluster_region_from_grid(frame_shape, min_region, cluster, boxes, region_grid):
|
|
min_x = frame_shape[1]
|
|
min_y = frame_shape[0]
|
|
max_x = 0
|
|
max_y = 0
|
|
for b in cluster:
|
|
min_x = min(boxes[b][0], min_x)
|
|
min_y = min(boxes[b][1], min_y)
|
|
max_x = max(boxes[b][2], max_x)
|
|
max_y = max(boxes[b][3], max_y)
|
|
return get_region_from_grid(
|
|
frame_shape, [min_x, min_y, max_x, max_y], min_region, region_grid
|
|
)
|
|
|
|
|
|
def get_region_from_grid(
|
|
frame_shape: tuple[int],
|
|
cluster: list[int],
|
|
min_region: int,
|
|
region_grid: list[list[dict[str, any]]],
|
|
) -> list[int]:
|
|
"""Get a region for a box based on the region grid."""
|
|
box = calculate_region(
|
|
frame_shape, cluster[0], cluster[1], cluster[2], cluster[3], min_region
|
|
)
|
|
centroid = (
|
|
box[0] + (min(frame_shape[1], box[2]) - box[0]) / 2,
|
|
box[1] + (min(frame_shape[0], box[3]) - box[1]) / 2,
|
|
)
|
|
grid_x = int(centroid[0] / frame_shape[1] * GRID_SIZE)
|
|
grid_y = int(centroid[1] / frame_shape[0] * GRID_SIZE)
|
|
|
|
cell = region_grid[grid_x][grid_y]
|
|
|
|
# if there is no known data, use original region calculation
|
|
if not cell or not cell["sizes"]:
|
|
return box
|
|
|
|
# convert the calculated region size to relative
|
|
calc_size = (box[2] - box[0]) / frame_shape[1]
|
|
|
|
# if region is within expected size, don't resize
|
|
if (
|
|
(cell["mean"] - cell["std_dev"])
|
|
<= calc_size
|
|
<= (cell["mean"] + cell["std_dev"])
|
|
):
|
|
return box
|
|
# TODO not sure how to handle case where cluster is larger than expected region
|
|
elif calc_size > (cell["mean"] + cell["std_dev"]):
|
|
return box
|
|
|
|
size = cell["mean"] * frame_shape[1]
|
|
|
|
# get region based on grid size
|
|
return calculate_region(
|
|
frame_shape,
|
|
max(0, centroid[0] - size / 2),
|
|
max(0, centroid[1] - size / 2),
|
|
min(frame_shape[1], centroid[0] + size / 2),
|
|
min(frame_shape[0], centroid[1] + size / 2),
|
|
min_region,
|
|
)
|
|
|
|
|
|
def is_object_filtered(obj, objects_to_track, object_filters):
|
|
object_name = obj[0]
|
|
object_score = obj[1]
|
|
object_box = obj[2]
|
|
object_area = obj[3]
|
|
object_ratio = obj[4]
|
|
|
|
if object_name not in objects_to_track:
|
|
return True
|
|
|
|
if object_name in object_filters:
|
|
obj_settings = object_filters[object_name]
|
|
|
|
# if the min area is larger than the
|
|
# detected object, don't add it to detected objects
|
|
if obj_settings.min_area > object_area:
|
|
return True
|
|
|
|
# if the detected object is larger than the
|
|
# max area, don't add it to detected objects
|
|
if obj_settings.max_area < object_area:
|
|
return True
|
|
|
|
# if the score is lower than the min_score, skip
|
|
if obj_settings.min_score > object_score:
|
|
return True
|
|
|
|
# if the object is not proportionally wide enough
|
|
if obj_settings.min_ratio > object_ratio:
|
|
return True
|
|
|
|
# if the object is proportionally too wide
|
|
if obj_settings.max_ratio < object_ratio:
|
|
return True
|
|
|
|
if obj_settings.mask is not None:
|
|
# compute the coordinates of the object and make sure
|
|
# the location isn't outside the bounds of the image (can happen from rounding)
|
|
object_xmin = object_box[0]
|
|
object_xmax = object_box[2]
|
|
object_ymax = object_box[3]
|
|
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
|
|
x_location = min(
|
|
int((object_xmax + object_xmin) / 2.0),
|
|
len(obj_settings.mask[0]) - 1,
|
|
)
|
|
|
|
# if the object is in a masked location, don't add it to detected objects
|
|
if obj_settings.mask[y_location][x_location] == 0:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def get_min_region_size(model_config: ModelConfig) -> int:
|
|
"""Get the min region size."""
|
|
return max(model_config.height, model_config.width)
|
|
|
|
|
|
def create_tensor_input(frame, model_config: ModelConfig, region):
|
|
if model_config.input_pixel_format == PixelFormatEnum.rgb:
|
|
cropped_frame = yuv_region_2_rgb(frame, region)
|
|
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
|
|
cropped_frame = yuv_region_2_bgr(frame, region)
|
|
else:
|
|
cropped_frame = yuv_region_2_yuv(frame, region)
|
|
|
|
# Resize if needed
|
|
if cropped_frame.shape != (model_config.height, model_config.width, 3):
|
|
cropped_frame = cv2.resize(
|
|
cropped_frame,
|
|
dsize=(model_config.width, model_config.height),
|
|
interpolation=cv2.INTER_LINEAR,
|
|
)
|
|
|
|
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
|
return np.expand_dims(cropped_frame, axis=0)
|
|
|
|
|
|
def box_overlaps(b1, b2):
|
|
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
|
|
return False
|
|
return True
|
|
|
|
|
|
def box_inside(b1, b2):
|
|
# check if b2 is inside b1
|
|
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
|
|
return True
|
|
return False
|
|
|
|
|
|
def reduce_boxes(boxes, iou_threshold=0.0):
|
|
clusters = []
|
|
|
|
for box in boxes:
|
|
matched = 0
|
|
for cluster in clusters:
|
|
if intersection_over_union(box, cluster) > iou_threshold:
|
|
matched = 1
|
|
cluster[0] = min(cluster[0], box[0])
|
|
cluster[1] = min(cluster[1], box[1])
|
|
cluster[2] = max(cluster[2], box[2])
|
|
cluster[3] = max(cluster[3], box[3])
|
|
|
|
if not matched:
|
|
clusters.append(list(box))
|
|
|
|
return [tuple(c) for c in clusters]
|
|
|
|
|
|
def intersects_any(box_a, boxes):
|
|
for box in boxes:
|
|
if box_overlaps(box_a, box):
|
|
return True
|
|
return False
|
|
|
|
|
|
def inside_any(box_a, boxes):
|
|
for box in boxes:
|
|
# check if box_a is inside of box
|
|
if box_inside(box, box_a):
|
|
return True
|
|
return False
|
|
|
|
|
|
def get_cluster_boundary(box, min_region):
|
|
# compute the max region size for the current box (box is 10% of region)
|
|
box_width = box[2] - box[0]
|
|
box_height = box[3] - box[1]
|
|
max_region_area = abs(box_width * box_height) / 0.1
|
|
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
|
|
|
|
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
|
|
|
|
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
|
|
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
|
|
|
|
return [
|
|
int(centroid[0] - max_x_dist),
|
|
int(centroid[1] - max_y_dist),
|
|
int(centroid[0] + max_x_dist),
|
|
int(centroid[1] + max_y_dist),
|
|
]
|
|
|
|
|
|
def get_cluster_candidates(frame_shape, min_region, boxes):
|
|
# and create a cluster of other boxes using it's max region size
|
|
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
|
|
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
|
|
# determined by the max_region size minus half the box + 20%
|
|
# TODO: see if we can do this with numpy
|
|
cluster_candidates = []
|
|
used_boxes = []
|
|
# loop over each box
|
|
for current_index, b in enumerate(boxes):
|
|
if current_index in used_boxes:
|
|
continue
|
|
cluster = [current_index]
|
|
used_boxes.append(current_index)
|
|
cluster_boundary = get_cluster_boundary(b, min_region)
|
|
# find all other boxes that fit inside the boundary
|
|
for compare_index, compare_box in enumerate(boxes):
|
|
if compare_index in used_boxes:
|
|
continue
|
|
|
|
# if the box is not inside the potential cluster area, cluster them
|
|
if not box_inside(cluster_boundary, compare_box):
|
|
continue
|
|
|
|
# get the region if you were to add this box to the cluster
|
|
potential_cluster = cluster + [compare_index]
|
|
cluster_region = get_cluster_region(
|
|
frame_shape, min_region, potential_cluster, boxes
|
|
)
|
|
# if region could be smaller and either box would be too small
|
|
# for the resulting region, dont cluster
|
|
should_cluster = True
|
|
if (cluster_region[2] - cluster_region[0]) > min_region:
|
|
for b in potential_cluster:
|
|
box = boxes[b]
|
|
# boxes should be more than 5% of the area of the region
|
|
if area(box) / area(cluster_region) < 0.05:
|
|
should_cluster = False
|
|
break
|
|
|
|
if should_cluster:
|
|
cluster.append(compare_index)
|
|
used_boxes.append(compare_index)
|
|
cluster_candidates.append(cluster)
|
|
|
|
# return the unique clusters only
|
|
unique = {tuple(sorted(c)) for c in cluster_candidates}
|
|
return [list(tup) for tup in unique]
|
|
|
|
|
|
def get_cluster_region(frame_shape, min_region, cluster, boxes):
|
|
min_x = frame_shape[1]
|
|
min_y = frame_shape[0]
|
|
max_x = 0
|
|
max_y = 0
|
|
for b in cluster:
|
|
min_x = min(boxes[b][0], min_x)
|
|
min_y = min(boxes[b][1], min_y)
|
|
max_x = max(boxes[b][2], max_x)
|
|
max_y = max(boxes[b][3], max_y)
|
|
return calculate_region(
|
|
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
|
|
)
|
|
|
|
|
|
def get_startup_regions(
|
|
frame_shape: tuple[int],
|
|
region_min_size: int,
|
|
region_grid: list[list[dict[str, any]]],
|
|
) -> list[list[int]]:
|
|
"""Get a list of regions to run on startup."""
|
|
# return 8 most popular regions for the camera
|
|
all_cells = np.concatenate(region_grid).flat
|
|
startup_cells = sorted(all_cells, key=lambda c: len(c["sizes"]), reverse=True)[0:8]
|
|
regions = []
|
|
|
|
for cell in startup_cells:
|
|
# rest of the cells are empty
|
|
if not cell["sizes"]:
|
|
break
|
|
|
|
x = frame_shape[1] / GRID_SIZE * (0.5 + cell["x"])
|
|
y = frame_shape[0] / GRID_SIZE * (0.5 + cell["y"])
|
|
size = cell["mean"] * frame_shape[1]
|
|
regions.append(
|
|
calculate_region(
|
|
frame_shape,
|
|
x - size / 2,
|
|
y - size / 2,
|
|
x + size / 2,
|
|
y + size / 2,
|
|
region_min_size,
|
|
multiplier=1,
|
|
)
|
|
)
|
|
|
|
return regions
|
|
|
|
|
|
def reduce_detections(
|
|
frame_shape: tuple[int],
|
|
all_detections: list[tuple[any]],
|
|
) -> list[tuple[any]]:
|
|
"""Take a list of detections and reduce overlaps to create a list of confident detections."""
|
|
|
|
def reduce_overlapping_detections(detections: list[tuple[any]]) -> list[tuple[any]]:
|
|
"""apply non-maxima suppression to suppress weak, overlapping bounding boxes."""
|
|
detected_object_groups = defaultdict(lambda: [])
|
|
for detection in detections:
|
|
detected_object_groups[detection[0]].append(detection)
|
|
|
|
selected_objects = []
|
|
for group in detected_object_groups.values():
|
|
# o[2] is the box of the object: xmin, ymin, xmax, ymax
|
|
# apply max/min to ensure values do not exceed the known frame size
|
|
boxes = [
|
|
(
|
|
o[2][0],
|
|
o[2][1],
|
|
o[2][2] - o[2][0],
|
|
o[2][3] - o[2][1],
|
|
)
|
|
for o in group
|
|
]
|
|
|
|
# reduce confidences for objects that are on edge of region
|
|
# 0.6 should be used to ensure that the object is still considered and not dropped
|
|
# due to min score requirement of NMSBoxes
|
|
confidences = [0.6 if clipped(o, frame_shape) else o[1] for o in group]
|
|
|
|
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
|
|
|
# add objects
|
|
for index in idxs:
|
|
index = index if isinstance(index, np.int32) else index[0]
|
|
obj = group[index]
|
|
selected_objects.append(obj)
|
|
|
|
# set the detections list to only include top objects
|
|
return selected_objects
|
|
|
|
def get_consolidated_object_detections(detections: list[tuple[any]]):
|
|
"""Drop detections that overlap too much."""
|
|
detected_object_groups = defaultdict(lambda: [])
|
|
for detection in detections:
|
|
detected_object_groups[detection[0]].append(detection)
|
|
|
|
consolidated_detections = []
|
|
for group in detected_object_groups.values():
|
|
# if the group only has 1 item, skip
|
|
if len(group) == 1:
|
|
consolidated_detections.append(group[0])
|
|
continue
|
|
|
|
# sort smallest to largest by area
|
|
sorted_by_area = sorted(group, key=lambda g: g[3])
|
|
|
|
for current_detection_idx in range(0, len(sorted_by_area)):
|
|
current_detection = sorted_by_area[current_detection_idx]
|
|
current_label = current_detection[0]
|
|
current_box = current_detection[2]
|
|
overlap = 0
|
|
for to_check_idx in range(
|
|
min(current_detection_idx + 1, len(sorted_by_area)),
|
|
len(sorted_by_area),
|
|
):
|
|
to_check = sorted_by_area[to_check_idx][2]
|
|
|
|
# if area of current detection / area of check < 5% they should not be compared
|
|
# this covers cases where a large car parked in a driveway doesn't block detections
|
|
# of cars in the street behind it
|
|
if area(current_box) / area(to_check) < 0.05:
|
|
continue
|
|
|
|
intersect_box = intersection(current_box, to_check)
|
|
# if % of smaller detection is inside of another detection, consolidate
|
|
if intersect_box is not None and area(intersect_box) / area(
|
|
current_box
|
|
) > LABEL_CONSOLIDATION_MAP.get(
|
|
current_label, LABEL_CONSOLIDATION_DEFAULT
|
|
):
|
|
overlap = 1
|
|
break
|
|
if overlap == 0:
|
|
consolidated_detections.append(
|
|
sorted_by_area[current_detection_idx]
|
|
)
|
|
|
|
return consolidated_detections
|
|
|
|
return get_consolidated_object_detections(
|
|
reduce_overlapping_detections(all_detections)
|
|
)
|