mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-26 00:06:32 +01:00
36cbffcc5e
* Initial re-implementation of semantic search * put docker-compose back and make reindex match docs * remove debug code and fix import * fix docs * manually build pysqlite3 as binaries are only available for x86-64 * update comment in build_pysqlite3.sh * only embed objects * better error handling when genai fails * ask ollama to pull requested model at startup * update ollama docs * address some PR review comments * fix lint * use IPC to write description, update docs for reindex * remove gemini-pro-vision from docs as it will be unavailable soon * fix OpenAI doc available models * fix api error in gemini and metadata for embeddings
198 lines
6.8 KiB
Python
198 lines
6.8 KiB
Python
"""Maintain embeddings in Chroma."""
|
|
|
|
import base64
|
|
import io
|
|
import logging
|
|
import threading
|
|
from multiprocessing.synchronize import Event as MpEvent
|
|
from typing import Optional
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from peewee import DoesNotExist
|
|
from PIL import Image
|
|
|
|
from frigate.comms.events_updater import EventEndSubscriber, EventUpdateSubscriber
|
|
from frigate.comms.inter_process import InterProcessRequestor
|
|
from frigate.config import FrigateConfig
|
|
from frigate.const import UPDATE_EVENT_DESCRIPTION
|
|
from frigate.events.types import EventTypeEnum
|
|
from frigate.genai import get_genai_client
|
|
from frigate.models import Event
|
|
from frigate.util.image import SharedMemoryFrameManager, calculate_region
|
|
|
|
from .embeddings import Embeddings, get_metadata
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class EmbeddingMaintainer(threading.Thread):
|
|
"""Handle embedding queue and post event updates."""
|
|
|
|
def __init__(
|
|
self,
|
|
config: FrigateConfig,
|
|
stop_event: MpEvent,
|
|
) -> None:
|
|
threading.Thread.__init__(self)
|
|
self.name = "embeddings_maintainer"
|
|
self.config = config
|
|
self.embeddings = Embeddings()
|
|
self.event_subscriber = EventUpdateSubscriber()
|
|
self.event_end_subscriber = EventEndSubscriber()
|
|
self.frame_manager = SharedMemoryFrameManager()
|
|
# create communication for updating event descriptions
|
|
self.requestor = InterProcessRequestor()
|
|
self.stop_event = stop_event
|
|
self.tracked_events = {}
|
|
self.genai_client = get_genai_client(config.genai)
|
|
|
|
def run(self) -> None:
|
|
"""Maintain a Chroma vector database for semantic search."""
|
|
while not self.stop_event.is_set():
|
|
self._process_updates()
|
|
self._process_finalized()
|
|
|
|
self.event_subscriber.stop()
|
|
self.event_end_subscriber.stop()
|
|
self.requestor.stop()
|
|
logger.info("Exiting embeddings maintenance...")
|
|
|
|
def _process_updates(self) -> None:
|
|
"""Process event updates"""
|
|
update = self.event_subscriber.check_for_update()
|
|
|
|
if update is None:
|
|
return
|
|
|
|
source_type, _, camera, data = update
|
|
|
|
if not camera or source_type != EventTypeEnum.tracked_object:
|
|
return
|
|
|
|
camera_config = self.config.cameras[camera]
|
|
if data["id"] not in self.tracked_events:
|
|
self.tracked_events[data["id"]] = []
|
|
|
|
# Create our own thumbnail based on the bounding box and the frame time
|
|
try:
|
|
frame_id = f"{camera}{data['frame_time']}"
|
|
yuv_frame = self.frame_manager.get(frame_id, camera_config.frame_shape_yuv)
|
|
data["thumbnail"] = self._create_thumbnail(yuv_frame, data["box"])
|
|
self.tracked_events[data["id"]].append(data)
|
|
self.frame_manager.close(frame_id)
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
def _process_finalized(self) -> None:
|
|
"""Process the end of an event."""
|
|
while True:
|
|
ended = self.event_end_subscriber.check_for_update()
|
|
|
|
if ended == None:
|
|
break
|
|
|
|
event_id, camera, updated_db = ended
|
|
camera_config = self.config.cameras[camera]
|
|
|
|
if updated_db:
|
|
try:
|
|
event: Event = Event.get(Event.id == event_id)
|
|
except DoesNotExist:
|
|
continue
|
|
|
|
# Skip the event if not an object
|
|
if event.data.get("type") != "object":
|
|
continue
|
|
|
|
# Extract valid event metadata
|
|
metadata = get_metadata(event)
|
|
thumbnail = base64.b64decode(event.thumbnail)
|
|
|
|
# Embed the thumbnail
|
|
self._embed_thumbnail(event_id, thumbnail, metadata)
|
|
|
|
if (
|
|
camera_config.genai.enabled
|
|
and self.genai_client is not None
|
|
and event.data.get("description") is None
|
|
):
|
|
# Generate the description. Call happens in a thread since it is network bound.
|
|
threading.Thread(
|
|
target=self._embed_description,
|
|
name=f"_embed_description_{event.id}",
|
|
daemon=True,
|
|
args=(
|
|
event,
|
|
[
|
|
data["thumbnail"]
|
|
for data in self.tracked_events[event_id]
|
|
]
|
|
if len(self.tracked_events.get(event_id, [])) > 0
|
|
else [thumbnail],
|
|
metadata,
|
|
),
|
|
).start()
|
|
|
|
# Delete tracked events based on the event_id
|
|
if event_id in self.tracked_events:
|
|
del self.tracked_events[event_id]
|
|
|
|
def _create_thumbnail(self, yuv_frame, box, height=500) -> Optional[bytes]:
|
|
"""Return jpg thumbnail of a region of the frame."""
|
|
frame = cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420)
|
|
region = calculate_region(
|
|
frame.shape, box[0], box[1], box[2], box[3], height, multiplier=1.4
|
|
)
|
|
frame = frame[region[1] : region[3], region[0] : region[2]]
|
|
width = int(height * frame.shape[1] / frame.shape[0])
|
|
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
|
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
|
|
|
|
if ret:
|
|
return jpg.tobytes()
|
|
|
|
return None
|
|
|
|
def _embed_thumbnail(self, event_id: str, thumbnail: bytes, metadata: dict) -> None:
|
|
"""Embed the thumbnail for an event."""
|
|
|
|
# Encode the thumbnail
|
|
img = np.array(Image.open(io.BytesIO(thumbnail)).convert("RGB"))
|
|
self.embeddings.thumbnail.upsert(
|
|
images=[img],
|
|
metadatas=[metadata],
|
|
ids=[event_id],
|
|
)
|
|
|
|
def _embed_description(
|
|
self, event: Event, thumbnails: list[bytes], metadata: dict
|
|
) -> None:
|
|
"""Embed the description for an event."""
|
|
|
|
description = self.genai_client.generate_description(thumbnails, metadata)
|
|
|
|
if description is None:
|
|
logger.debug("Failed to generate description for %s", event.id)
|
|
return
|
|
|
|
# fire and forget description update
|
|
self.requestor.send_data(
|
|
UPDATE_EVENT_DESCRIPTION,
|
|
{"id": event.id, "description": description},
|
|
)
|
|
|
|
# Encode the description
|
|
self.embeddings.description.upsert(
|
|
documents=[description],
|
|
metadatas=[metadata],
|
|
ids=[event.id],
|
|
)
|
|
|
|
logger.debug(
|
|
"Generated description for %s (%d images): %s",
|
|
event.id,
|
|
len(thumbnails),
|
|
description,
|
|
)
|