mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-23 19:11:14 +01:00
836 lines
28 KiB
Python
836 lines
28 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
from enum import Enum
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import yaml
|
|
from pydantic import BaseModel, Extra, Field, validator
|
|
from pydantic.fields import PrivateAttr
|
|
|
|
from frigate.const import BASE_DIR, CACHE_DIR
|
|
from frigate.edgetpu import load_labels
|
|
from frigate.util import create_mask, deep_merge
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# TODO: Identify what the default format to display timestamps is
|
|
DEFAULT_TIME_FORMAT = "%m/%d/%Y %H:%M:%S"
|
|
# German Style:
|
|
# DEFAULT_TIME_FORMAT = "%d.%m.%Y %H:%M:%S"
|
|
|
|
FRIGATE_ENV_VARS = {k: v for k, v in os.environ.items() if k.startswith("FRIGATE_")}
|
|
|
|
DEFAULT_TRACKED_OBJECTS = ["person"]
|
|
DEFAULT_DETECTORS = {"cpu": {"type": "cpu"}}
|
|
|
|
|
|
class FrigateBaseModel(BaseModel):
|
|
class Config:
|
|
extra = Extra.forbid
|
|
|
|
|
|
class DetectorTypeEnum(str, Enum):
|
|
edgetpu = "edgetpu"
|
|
cpu = "cpu"
|
|
|
|
|
|
class DetectorConfig(FrigateBaseModel):
|
|
type: DetectorTypeEnum = Field(default=DetectorTypeEnum.cpu, title="Detector Type")
|
|
device: str = Field(default="usb", title="Device Type")
|
|
num_threads: int = Field(default=3, title="Number of detection threads")
|
|
|
|
|
|
class MqttConfig(FrigateBaseModel):
|
|
host: str = Field(title="MQTT Host")
|
|
port: int = Field(default=1883, title="MQTT Port")
|
|
topic_prefix: str = Field(default="frigate", title="MQTT Topic Prefix")
|
|
client_id: str = Field(default="frigate", title="MQTT Client ID")
|
|
stats_interval: int = Field(default=60, title="MQTT Camera Stats Interval")
|
|
user: Optional[str] = Field(title="MQTT Username")
|
|
password: Optional[str] = Field(title="MQTT Password")
|
|
tls_ca_certs: Optional[str] = Field(title="MQTT TLS CA Certificates")
|
|
tls_client_cert: Optional[str] = Field(title="MQTT TLS Client Certificate")
|
|
tls_client_key: Optional[str] = Field(title="MQTT TLS Client Key")
|
|
tls_insecure: Optional[bool] = Field(title="MQTT TLS Insecure")
|
|
|
|
@validator("password", pre=True, always=True)
|
|
def validate_password(cls, v, values):
|
|
if (v is None) != (values["user"] is None):
|
|
raise ValueError("Password must be provided with username.")
|
|
return v
|
|
|
|
|
|
class RetainConfig(FrigateBaseModel):
|
|
default: float = Field(default=10, title="Default retention period.")
|
|
objects: Dict[str, float] = Field(
|
|
default_factory=dict, title="Object retention period."
|
|
)
|
|
|
|
|
|
class EventsConfig(FrigateBaseModel):
|
|
max_seconds: int = Field(default=300, title="Maximum event duration.")
|
|
pre_capture: int = Field(default=5, title="Seconds to retain before event starts.")
|
|
post_capture: int = Field(default=5, title="Seconds to retain after event ends.")
|
|
required_zones: List[str] = Field(
|
|
default_factory=list,
|
|
title="List of required zones to be entered in order to save the event.",
|
|
)
|
|
objects: Optional[List[str]] = Field(
|
|
title="List of objects to be detected in order to save the event.",
|
|
)
|
|
retain: RetainConfig = Field(
|
|
default_factory=RetainConfig, title="Event retention settings."
|
|
)
|
|
|
|
|
|
class RecordConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable record on all cameras.")
|
|
retain_days: float = Field(default=0, title="Recording retention period in days.")
|
|
events: EventsConfig = Field(
|
|
default_factory=EventsConfig, title="Event specific settings."
|
|
)
|
|
|
|
|
|
class MotionConfig(FrigateBaseModel):
|
|
threshold: int = Field(
|
|
default=25,
|
|
title="Motion detection threshold (1-255).",
|
|
ge=1,
|
|
le=255,
|
|
)
|
|
contour_area: Optional[int] = Field(default=30, title="Contour Area")
|
|
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
|
|
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
|
|
frame_height: Optional[int] = Field(default=50, title="Frame Height")
|
|
mask: Union[str, List[str]] = Field(
|
|
default="", title="Coordinates polygon for the motion mask."
|
|
)
|
|
|
|
|
|
class RuntimeMotionConfig(MotionConfig):
|
|
raw_mask: Union[str, List[str]] = ""
|
|
mask: np.ndarray = None
|
|
|
|
def __init__(self, **config):
|
|
frame_shape = config.get("frame_shape", (1, 1))
|
|
|
|
mask = config.get("mask", "")
|
|
config["raw_mask"] = mask
|
|
|
|
if mask:
|
|
config["mask"] = create_mask(frame_shape, mask)
|
|
else:
|
|
empty_mask = np.zeros(frame_shape, np.uint8)
|
|
empty_mask[:] = 255
|
|
config["mask"] = empty_mask
|
|
|
|
super().__init__(**config)
|
|
|
|
def dict(self, **kwargs):
|
|
ret = super().dict(**kwargs)
|
|
if "mask" in ret:
|
|
ret["mask"] = ret["raw_mask"]
|
|
ret.pop("raw_mask")
|
|
return ret
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|
|
extra = Extra.ignore
|
|
|
|
|
|
class DetectConfig(FrigateBaseModel):
|
|
height: int = Field(default=720, title="Height of the stream for the detect role.")
|
|
width: int = Field(default=1280, title="Width of the stream for the detect role.")
|
|
fps: int = Field(
|
|
default=5, title="Number of frames per second to process through detection."
|
|
)
|
|
enabled: bool = Field(default=True, title="Detection Enabled.")
|
|
max_disappeared: Optional[int] = Field(
|
|
title="Maximum number of frames the object can dissapear before detection ends."
|
|
)
|
|
stationary_interval: Optional[int] = Field(
|
|
title="Frame interval for checking stationary objects.",
|
|
ge=1,
|
|
)
|
|
|
|
|
|
class FilterConfig(FrigateBaseModel):
|
|
min_area: int = Field(
|
|
default=0, title="Minimum area of bounding box for object to be counted."
|
|
)
|
|
max_area: int = Field(
|
|
default=24000000, title="Maximum area of bounding box for object to be counted."
|
|
)
|
|
threshold: float = Field(
|
|
default=0.7,
|
|
title="Average detection confidence threshold for object to be counted.",
|
|
)
|
|
min_score: float = Field(
|
|
default=0.5, title="Minimum detection confidence for object to be counted."
|
|
)
|
|
mask: Optional[Union[str, List[str]]] = Field(
|
|
title="Detection area polygon mask for this filter configuration.",
|
|
)
|
|
|
|
|
|
class RuntimeFilterConfig(FilterConfig):
|
|
mask: Optional[np.ndarray]
|
|
raw_mask: Optional[Union[str, List[str]]]
|
|
|
|
def __init__(self, **config):
|
|
mask = config.get("mask")
|
|
config["raw_mask"] = mask
|
|
|
|
if mask is not None:
|
|
config["mask"] = create_mask(config.get("frame_shape", (1, 1)), mask)
|
|
|
|
super().__init__(**config)
|
|
|
|
def dict(self, **kwargs):
|
|
ret = super().dict(**kwargs)
|
|
if "mask" in ret:
|
|
ret["mask"] = ret["raw_mask"]
|
|
ret.pop("raw_mask")
|
|
return ret
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|
|
extra = Extra.ignore
|
|
|
|
|
|
# this uses the base model because the color is an extra attribute
|
|
class ZoneConfig(BaseModel):
|
|
filters: Dict[str, FilterConfig] = Field(
|
|
default_factory=dict, title="Zone filters."
|
|
)
|
|
coordinates: Union[str, List[str]] = Field(
|
|
title="Coordinates polygon for the defined zone."
|
|
)
|
|
objects: List[str] = Field(
|
|
default_factory=list,
|
|
title="List of objects that can trigger the zone.",
|
|
)
|
|
_color: Optional[Tuple[int, int, int]] = PrivateAttr()
|
|
_contour: np.ndarray = PrivateAttr()
|
|
|
|
@property
|
|
def color(self) -> Tuple[int, int, int]:
|
|
return self._color
|
|
|
|
@property
|
|
def contour(self) -> np.ndarray:
|
|
return self._contour
|
|
|
|
def __init__(self, **config):
|
|
super().__init__(**config)
|
|
|
|
self._color = config.get("color", (0, 0, 0))
|
|
coordinates = config["coordinates"]
|
|
|
|
if isinstance(coordinates, list):
|
|
self._contour = np.array(
|
|
[[int(p.split(",")[0]), int(p.split(",")[1])] for p in coordinates]
|
|
)
|
|
elif isinstance(coordinates, str):
|
|
points = coordinates.split(",")
|
|
self._contour = np.array(
|
|
[[int(points[i]), int(points[i + 1])] for i in range(0, len(points), 2)]
|
|
)
|
|
else:
|
|
self._contour = np.array([])
|
|
|
|
|
|
class ObjectConfig(FrigateBaseModel):
|
|
track: List[str] = Field(default=DEFAULT_TRACKED_OBJECTS, title="Objects to track.")
|
|
filters: Optional[Dict[str, FilterConfig]] = Field(title="Object filters.")
|
|
mask: Union[str, List[str]] = Field(default="", title="Object mask.")
|
|
|
|
|
|
class BirdseyeModeEnum(str, Enum):
|
|
objects = "objects"
|
|
motion = "motion"
|
|
continuous = "continuous"
|
|
|
|
|
|
class BirdseyeConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=True, title="Enable birdseye view.")
|
|
width: int = Field(default=1280, title="Birdseye width.")
|
|
height: int = Field(default=720, title="Birdseye height.")
|
|
quality: int = Field(
|
|
default=8,
|
|
title="Encoding quality.",
|
|
ge=1,
|
|
le=31,
|
|
)
|
|
mode: BirdseyeModeEnum = Field(
|
|
default=BirdseyeModeEnum.objects, title="Tracking mode."
|
|
)
|
|
|
|
|
|
FFMPEG_GLOBAL_ARGS_DEFAULT = ["-hide_banner", "-loglevel", "warning"]
|
|
FFMPEG_INPUT_ARGS_DEFAULT = [
|
|
"-avoid_negative_ts",
|
|
"make_zero",
|
|
"-fflags",
|
|
"+genpts+discardcorrupt",
|
|
"-rtsp_transport",
|
|
"tcp",
|
|
"-stimeout",
|
|
"5000000",
|
|
"-use_wallclock_as_timestamps",
|
|
"1",
|
|
]
|
|
DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-f", "rawvideo", "-pix_fmt", "yuv420p"]
|
|
RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-c", "copy", "-f", "flv"]
|
|
RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT = [
|
|
"-f",
|
|
"segment",
|
|
"-segment_time",
|
|
"10",
|
|
"-segment_format",
|
|
"mp4",
|
|
"-reset_timestamps",
|
|
"1",
|
|
"-strftime",
|
|
"1",
|
|
"-c",
|
|
"copy",
|
|
"-an",
|
|
]
|
|
|
|
|
|
class FfmpegOutputArgsConfig(FrigateBaseModel):
|
|
detect: Union[str, List[str]] = Field(
|
|
default=DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT,
|
|
title="Detect role FFmpeg output arguments.",
|
|
)
|
|
record: Union[str, List[str]] = Field(
|
|
default=RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT,
|
|
title="Record role FFmpeg output arguments.",
|
|
)
|
|
rtmp: Union[str, List[str]] = Field(
|
|
default=RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT,
|
|
title="RTMP role FFmpeg output arguments.",
|
|
)
|
|
|
|
|
|
class FfmpegConfig(FrigateBaseModel):
|
|
global_args: Union[str, List[str]] = Field(
|
|
default=FFMPEG_GLOBAL_ARGS_DEFAULT, title="Global FFmpeg arguments."
|
|
)
|
|
hwaccel_args: Union[str, List[str]] = Field(
|
|
default_factory=list, title="FFmpeg hardware acceleration arguments."
|
|
)
|
|
input_args: Union[str, List[str]] = Field(
|
|
default=FFMPEG_INPUT_ARGS_DEFAULT, title="FFmpeg input arguments."
|
|
)
|
|
output_args: FfmpegOutputArgsConfig = Field(
|
|
default_factory=FfmpegOutputArgsConfig,
|
|
title="FFmpeg output arguments per role.",
|
|
)
|
|
|
|
|
|
class CameraRoleEnum(str, Enum):
|
|
record = "record"
|
|
rtmp = "rtmp"
|
|
detect = "detect"
|
|
|
|
|
|
class CameraInput(FrigateBaseModel):
|
|
path: str = Field(title="Camera input path.")
|
|
roles: List[CameraRoleEnum] = Field(title="Roles assigned to this input.")
|
|
global_args: Union[str, List[str]] = Field(
|
|
default_factory=list, title="FFmpeg global arguments."
|
|
)
|
|
hwaccel_args: Union[str, List[str]] = Field(
|
|
default_factory=list, title="FFmpeg hardware acceleration arguments."
|
|
)
|
|
input_args: Union[str, List[str]] = Field(
|
|
default_factory=list, title="FFmpeg input arguments."
|
|
)
|
|
|
|
|
|
class CameraFfmpegConfig(FfmpegConfig):
|
|
inputs: List[CameraInput] = Field(title="Camera inputs.")
|
|
|
|
@validator("inputs")
|
|
def validate_roles(cls, v):
|
|
roles = [role for i in v for role in i.roles]
|
|
roles_set = set(roles)
|
|
|
|
if len(roles) > len(roles_set):
|
|
raise ValueError("Each input role may only be used once.")
|
|
|
|
if not "detect" in roles:
|
|
raise ValueError("The detect role is required.")
|
|
|
|
return v
|
|
|
|
|
|
class SnapshotsConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Snapshots enabled.")
|
|
clean_copy: bool = Field(
|
|
default=True, title="Create a clean copy of the snapshot image."
|
|
)
|
|
timestamp: bool = Field(
|
|
default=False, title="Add a timestamp overlay on the snapshot."
|
|
)
|
|
bounding_box: bool = Field(
|
|
default=True, title="Add a bounding box overlay on the snapshot."
|
|
)
|
|
crop: bool = Field(default=False, title="Crop the snapshot to the detected object.")
|
|
required_zones: List[str] = Field(
|
|
default_factory=list,
|
|
title="List of required zones to be entered in order to save a snapshot.",
|
|
)
|
|
height: Optional[int] = Field(title="Snapshot image height.")
|
|
retain: RetainConfig = Field(
|
|
default_factory=RetainConfig, title="Snapshot retention."
|
|
)
|
|
quality: int = Field(
|
|
default=70,
|
|
title="Quality of the encoded jpeg (0-100).",
|
|
ge=0,
|
|
le=100,
|
|
)
|
|
|
|
|
|
class ColorConfig(FrigateBaseModel):
|
|
red: int = Field(default=255, ge=0, le=255, title="Red")
|
|
green: int = Field(default=255, ge=0, le=255, title="Green")
|
|
blue: int = Field(default=255, ge=0, le=255, title="Blue")
|
|
|
|
|
|
class TimestampPositionEnum(str, Enum):
|
|
tl = "tl"
|
|
tr = "tr"
|
|
bl = "bl"
|
|
br = "br"
|
|
|
|
|
|
class TimestampEffectEnum(str, Enum):
|
|
solid = "solid"
|
|
shadow = "shadow"
|
|
|
|
|
|
class TimestampStyleConfig(FrigateBaseModel):
|
|
position: TimestampPositionEnum = Field(
|
|
default=TimestampPositionEnum.tl, title="Timestamp position."
|
|
)
|
|
format: str = Field(default=DEFAULT_TIME_FORMAT, title="Timestamp format.")
|
|
color: ColorConfig = Field(default_factory=ColorConfig, title="Timestamp color.")
|
|
thickness: int = Field(default=2, title="Timestamp thickness.")
|
|
effect: Optional[TimestampEffectEnum] = Field(title="Timestamp effect.")
|
|
|
|
|
|
class CameraMqttConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=True, title="Send image over MQTT.")
|
|
timestamp: bool = Field(default=True, title="Add timestamp to MQTT image.")
|
|
bounding_box: bool = Field(default=True, title="Add bounding box to MQTT image.")
|
|
crop: bool = Field(default=True, title="Crop MQTT image to detected object.")
|
|
height: int = Field(default=270, title="MQTT image height.")
|
|
required_zones: List[str] = Field(
|
|
default_factory=list,
|
|
title="List of required zones to be entered in order to send the image.",
|
|
)
|
|
quality: int = Field(
|
|
default=70,
|
|
title="Quality of the encoded jpeg (0-100).",
|
|
ge=0,
|
|
le=100,
|
|
)
|
|
|
|
|
|
class RtmpConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=True, title="RTMP restreaming enabled.")
|
|
|
|
|
|
class CameraLiveConfig(FrigateBaseModel):
|
|
height: int = Field(default=720, title="Live camera view height")
|
|
quality: int = Field(default=8, ge=1, le=31, title="Live camera view quality")
|
|
|
|
|
|
class CameraConfig(FrigateBaseModel):
|
|
name: Optional[str] = Field(title="Camera name.")
|
|
ffmpeg: CameraFfmpegConfig = Field(title="FFmpeg configuration for the camera.")
|
|
best_image_timeout: int = Field(
|
|
default=60,
|
|
title="How long to wait for the image with the highest confidence score.",
|
|
)
|
|
zones: Dict[str, ZoneConfig] = Field(
|
|
default_factory=dict, title="Zone configuration."
|
|
)
|
|
record: RecordConfig = Field(
|
|
default_factory=RecordConfig, title="Record configuration."
|
|
)
|
|
rtmp: RtmpConfig = Field(
|
|
default_factory=RtmpConfig, title="RTMP restreaming configuration."
|
|
)
|
|
live: CameraLiveConfig = Field(
|
|
default_factory=CameraLiveConfig, title="Live playback settings."
|
|
)
|
|
snapshots: SnapshotsConfig = Field(
|
|
default_factory=SnapshotsConfig, title="Snapshot configuration."
|
|
)
|
|
mqtt: CameraMqttConfig = Field(
|
|
default_factory=CameraMqttConfig, title="MQTT configuration."
|
|
)
|
|
objects: ObjectConfig = Field(
|
|
default_factory=ObjectConfig, title="Object configuration."
|
|
)
|
|
motion: Optional[MotionConfig] = Field(title="Motion detection configuration.")
|
|
detect: DetectConfig = Field(
|
|
default_factory=DetectConfig, title="Object detection configuration."
|
|
)
|
|
timestamp_style: TimestampStyleConfig = Field(
|
|
default_factory=TimestampStyleConfig, title="Timestamp style configuration."
|
|
)
|
|
_ffmpeg_cmds: List[Dict[str, List[str]]] = PrivateAttr()
|
|
|
|
def __init__(self, **config):
|
|
# Set zone colors
|
|
if "zones" in config:
|
|
colors = plt.cm.get_cmap("tab10", len(config["zones"]))
|
|
config["zones"] = {
|
|
name: {**z, "color": tuple(round(255 * c) for c in colors(idx)[:3])}
|
|
for idx, (name, z) in enumerate(config["zones"].items())
|
|
}
|
|
|
|
# add roles to the input if there is only one
|
|
if len(config["ffmpeg"]["inputs"]) == 1:
|
|
config["ffmpeg"]["inputs"][0]["roles"] = ["record", "rtmp", "detect"]
|
|
|
|
super().__init__(**config)
|
|
|
|
@property
|
|
def frame_shape(self) -> Tuple[int, int]:
|
|
return self.detect.height, self.detect.width
|
|
|
|
@property
|
|
def frame_shape_yuv(self) -> Tuple[int, int]:
|
|
return self.detect.height * 3 // 2, self.detect.width
|
|
|
|
@property
|
|
def ffmpeg_cmds(self) -> List[Dict[str, List[str]]]:
|
|
return self._ffmpeg_cmds
|
|
|
|
def create_ffmpeg_cmds(self):
|
|
ffmpeg_cmds = []
|
|
for ffmpeg_input in self.ffmpeg.inputs:
|
|
ffmpeg_cmd = self._get_ffmpeg_cmd(ffmpeg_input)
|
|
if ffmpeg_cmd is None:
|
|
continue
|
|
|
|
ffmpeg_cmds.append({"roles": ffmpeg_input.roles, "cmd": ffmpeg_cmd})
|
|
self._ffmpeg_cmds = ffmpeg_cmds
|
|
|
|
def _get_ffmpeg_cmd(self, ffmpeg_input: CameraInput):
|
|
ffmpeg_output_args = []
|
|
if "detect" in ffmpeg_input.roles:
|
|
detect_args = (
|
|
self.ffmpeg.output_args.detect
|
|
if isinstance(self.ffmpeg.output_args.detect, list)
|
|
else self.ffmpeg.output_args.detect.split(" ")
|
|
)
|
|
ffmpeg_output_args = (
|
|
[
|
|
"-r",
|
|
str(self.detect.fps),
|
|
"-s",
|
|
f"{self.detect.width}x{self.detect.height}",
|
|
]
|
|
+ detect_args
|
|
+ ffmpeg_output_args
|
|
+ ["pipe:"]
|
|
)
|
|
if "rtmp" in ffmpeg_input.roles and self.rtmp.enabled:
|
|
rtmp_args = (
|
|
self.ffmpeg.output_args.rtmp
|
|
if isinstance(self.ffmpeg.output_args.rtmp, list)
|
|
else self.ffmpeg.output_args.rtmp.split(" ")
|
|
)
|
|
ffmpeg_output_args = (
|
|
rtmp_args + [f"rtmp://127.0.0.1/live/{self.name}"] + ffmpeg_output_args
|
|
)
|
|
if "record" in ffmpeg_input.roles and self.record.enabled:
|
|
record_args = (
|
|
self.ffmpeg.output_args.record
|
|
if isinstance(self.ffmpeg.output_args.record, list)
|
|
else self.ffmpeg.output_args.record.split(" ")
|
|
)
|
|
|
|
ffmpeg_output_args = (
|
|
record_args
|
|
+ [f"{os.path.join(CACHE_DIR, self.name)}-%Y%m%d%H%M%S.mp4"]
|
|
+ ffmpeg_output_args
|
|
)
|
|
|
|
# if there arent any outputs enabled for this input
|
|
if len(ffmpeg_output_args) == 0:
|
|
return None
|
|
|
|
global_args = ffmpeg_input.global_args or self.ffmpeg.global_args
|
|
hwaccel_args = ffmpeg_input.hwaccel_args or self.ffmpeg.hwaccel_args
|
|
input_args = ffmpeg_input.input_args or self.ffmpeg.input_args
|
|
|
|
global_args = (
|
|
global_args if isinstance(global_args, list) else global_args.split(" ")
|
|
)
|
|
hwaccel_args = (
|
|
hwaccel_args if isinstance(hwaccel_args, list) else hwaccel_args.split(" ")
|
|
)
|
|
input_args = (
|
|
input_args if isinstance(input_args, list) else input_args.split(" ")
|
|
)
|
|
|
|
cmd = (
|
|
["ffmpeg"]
|
|
+ global_args
|
|
+ hwaccel_args
|
|
+ input_args
|
|
+ ["-i", ffmpeg_input.path]
|
|
+ ffmpeg_output_args
|
|
)
|
|
|
|
return [part for part in cmd if part != ""]
|
|
|
|
|
|
class DatabaseConfig(FrigateBaseModel):
|
|
path: str = Field(
|
|
default=os.path.join(BASE_DIR, "frigate.db"), title="Database path."
|
|
)
|
|
|
|
|
|
class ModelConfig(FrigateBaseModel):
|
|
path: Optional[str] = Field(title="Custom Object detection model path.")
|
|
labelmap_path: Optional[str] = Field(title="Label map for custom object detector.")
|
|
width: int = Field(default=320, title="Object detection model input width.")
|
|
height: int = Field(default=320, title="Object detection model input height.")
|
|
labelmap: Dict[int, str] = Field(
|
|
default_factory=dict, title="Labelmap customization."
|
|
)
|
|
_merged_labelmap: Optional[Dict[int, str]] = PrivateAttr()
|
|
_colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr()
|
|
|
|
@property
|
|
def merged_labelmap(self) -> Dict[int, str]:
|
|
return self._merged_labelmap
|
|
|
|
@property
|
|
def colormap(self) -> Dict[int, tuple[int, int, int]]:
|
|
return self._colormap
|
|
|
|
def __init__(self, **config):
|
|
super().__init__(**config)
|
|
|
|
self._merged_labelmap = {
|
|
**load_labels(config.get("labelmap_path", "/labelmap.txt")),
|
|
**config.get("labelmap", {}),
|
|
}
|
|
|
|
cmap = plt.cm.get_cmap("tab10", len(self._merged_labelmap.keys()))
|
|
|
|
self._colormap = {}
|
|
for key, val in self._merged_labelmap.items():
|
|
self._colormap[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
|
|
|
|
|
class LogLevelEnum(str, Enum):
|
|
debug = "debug"
|
|
info = "info"
|
|
warning = "warning"
|
|
error = "error"
|
|
critical = "critical"
|
|
|
|
|
|
class LoggerConfig(FrigateBaseModel):
|
|
default: LogLevelEnum = Field(
|
|
default=LogLevelEnum.info, title="Default logging level."
|
|
)
|
|
logs: Dict[str, LogLevelEnum] = Field(
|
|
default_factory=dict, title="Log level for specified processes."
|
|
)
|
|
|
|
|
|
class FrigateConfig(FrigateBaseModel):
|
|
mqtt: MqttConfig = Field(title="MQTT Configuration.")
|
|
database: DatabaseConfig = Field(
|
|
default_factory=DatabaseConfig, title="Database configuration."
|
|
)
|
|
environment_vars: Dict[str, str] = Field(
|
|
default_factory=dict, title="Frigate environment variables."
|
|
)
|
|
model: ModelConfig = Field(
|
|
default_factory=ModelConfig, title="Detection model configuration."
|
|
)
|
|
detectors: Dict[str, DetectorConfig] = Field(
|
|
default={name: DetectorConfig(**d) for name, d in DEFAULT_DETECTORS.items()},
|
|
title="Detector hardware configuration.",
|
|
)
|
|
logger: LoggerConfig = Field(
|
|
default_factory=LoggerConfig, title="Logging configuration."
|
|
)
|
|
record: RecordConfig = Field(
|
|
default_factory=RecordConfig, title="Global record configuration."
|
|
)
|
|
snapshots: SnapshotsConfig = Field(
|
|
default_factory=SnapshotsConfig, title="Global snapshots configuration."
|
|
)
|
|
live: CameraLiveConfig = Field(
|
|
default_factory=CameraLiveConfig, title="Global live configuration."
|
|
)
|
|
rtmp: RtmpConfig = Field(
|
|
default_factory=RtmpConfig, title="Global RTMP restreaming configuration."
|
|
)
|
|
birdseye: BirdseyeConfig = Field(
|
|
default_factory=BirdseyeConfig, title="Birdseye configuration."
|
|
)
|
|
ffmpeg: FfmpegConfig = Field(
|
|
default_factory=FfmpegConfig, title="Global FFmpeg configuration."
|
|
)
|
|
objects: ObjectConfig = Field(
|
|
default_factory=ObjectConfig, title="Global object configuration."
|
|
)
|
|
motion: Optional[MotionConfig] = Field(
|
|
title="Global motion detection configuration."
|
|
)
|
|
detect: DetectConfig = Field(
|
|
default_factory=DetectConfig, title="Global object tracking configuration."
|
|
)
|
|
cameras: Dict[str, CameraConfig] = Field(title="Camera configuration.")
|
|
timestamp_style: TimestampStyleConfig = Field(
|
|
default_factory=TimestampStyleConfig,
|
|
title="Global timestamp style configuration.",
|
|
)
|
|
|
|
@property
|
|
def runtime_config(self) -> FrigateConfig:
|
|
"""Merge camera config with globals."""
|
|
config = self.copy(deep=True)
|
|
|
|
# MQTT password substitution
|
|
if config.mqtt.password:
|
|
config.mqtt.password = config.mqtt.password.format(**FRIGATE_ENV_VARS)
|
|
|
|
# Global config to propegate down to camera level
|
|
global_config = config.dict(
|
|
include={
|
|
"record": ...,
|
|
"snapshots": ...,
|
|
"live": ...,
|
|
"rtmp": ...,
|
|
"objects": ...,
|
|
"motion": ...,
|
|
"detect": ...,
|
|
"ffmpeg": ...,
|
|
"timestamp_style": ...,
|
|
},
|
|
exclude_unset=True,
|
|
)
|
|
|
|
for name, camera in config.cameras.items():
|
|
merged_config = deep_merge(camera.dict(exclude_unset=True), global_config)
|
|
camera_config: CameraConfig = CameraConfig.parse_obj(
|
|
{"name": name, **merged_config}
|
|
)
|
|
|
|
# Default max_disappeared configuration
|
|
max_disappeared = camera_config.detect.fps * 5
|
|
if camera_config.detect.max_disappeared is None:
|
|
camera_config.detect.max_disappeared = max_disappeared
|
|
|
|
# Default stationary_interval configuration
|
|
stationary_interval = camera_config.detect.fps * 10
|
|
if camera_config.detect.stationary_interval is None:
|
|
camera_config.detect.stationary_interval = stationary_interval
|
|
|
|
# FFMPEG input substitution
|
|
for input in camera_config.ffmpeg.inputs:
|
|
input.path = input.path.format(**FRIGATE_ENV_VARS)
|
|
|
|
# Add default filters
|
|
object_keys = camera_config.objects.track
|
|
if camera_config.objects.filters is None:
|
|
camera_config.objects.filters = {}
|
|
object_keys = object_keys - camera_config.objects.filters.keys()
|
|
for key in object_keys:
|
|
camera_config.objects.filters[key] = FilterConfig()
|
|
|
|
# Apply global object masks and convert masks to numpy array
|
|
for object, filter in camera_config.objects.filters.items():
|
|
if camera_config.objects.mask:
|
|
filter_mask = []
|
|
if filter.mask is not None:
|
|
filter_mask = (
|
|
filter.mask
|
|
if isinstance(filter.mask, list)
|
|
else [filter.mask]
|
|
)
|
|
object_mask = (
|
|
camera_config.objects.mask
|
|
if isinstance(camera_config.objects.mask, list)
|
|
else [camera_config.objects.mask]
|
|
)
|
|
filter.mask = filter_mask + object_mask
|
|
|
|
# Set runtime filter to create masks
|
|
camera_config.objects.filters[object] = RuntimeFilterConfig(
|
|
frame_shape=camera_config.frame_shape,
|
|
**filter.dict(exclude_unset=True),
|
|
)
|
|
|
|
# Convert motion configuration
|
|
if camera_config.motion is None:
|
|
camera_config.motion = RuntimeMotionConfig(
|
|
frame_shape=camera_config.frame_shape
|
|
)
|
|
else:
|
|
camera_config.motion = RuntimeMotionConfig(
|
|
frame_shape=camera_config.frame_shape,
|
|
raw_mask=camera_config.motion.mask,
|
|
**camera_config.motion.dict(exclude_unset=True),
|
|
)
|
|
|
|
# check runtime config
|
|
assigned_roles = list(
|
|
set([r for i in camera_config.ffmpeg.inputs for r in i.roles])
|
|
)
|
|
if camera_config.record.enabled and not "record" in assigned_roles:
|
|
raise ValueError(
|
|
f"Camera {name} has record enabled, but record is not assigned to an input."
|
|
)
|
|
|
|
if camera_config.rtmp.enabled and not "rtmp" in assigned_roles:
|
|
raise ValueError(
|
|
f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input."
|
|
)
|
|
|
|
config.cameras[name] = camera_config
|
|
|
|
return config
|
|
|
|
@validator("cameras")
|
|
def ensure_zones_and_cameras_have_different_names(cls, v: Dict[str, CameraConfig]):
|
|
zones = [zone for camera in v.values() for zone in camera.zones.keys()]
|
|
for zone in zones:
|
|
if zone in v.keys():
|
|
raise ValueError("Zones cannot share names with cameras")
|
|
return v
|
|
|
|
@classmethod
|
|
def parse_file(cls, config_file):
|
|
with open(config_file) as f:
|
|
raw_config = f.read()
|
|
|
|
if config_file.endswith(".yml"):
|
|
config = yaml.safe_load(raw_config)
|
|
elif config_file.endswith(".json"):
|
|
config = json.loads(raw_config)
|
|
|
|
return cls.parse_obj(config)
|