mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-12 00:06:43 +01:00
84a0827aee
Use config data classes to eliminate some of the boilerplate associated with setting up the configuration. In particular, using dataclasses removes a lot of the boilerplate around assigning properties to the object and allows these to be easily immutable by freezing them. In the case of simple, non-nested dataclasses, this also provides more convenient `asdict` helpers. To set this up, where previously the objects would be parsed from the config via the `__init__` method, create a `build` classmethod that does this and calls the dataclass initializer. Some of the objects are mutated at runtime, in particular some of the zones are mutated to set the color (this might be able to be refactored out) and some of the camera functionality can be enabled/disabled. Some of the configs with `enabled` properties don't seem to have mqtt hooks to be able to toggle this, in particular, the clips, snapshots, and detect can be toggled but rtmp and record configs do not, but all of these configs are still not frozen in case there is some other functionality I am missing. There are a couple other minor fixes here, one that was introduced by me recently where `max_seconds` was not defined, the other to properly `get()` the message payload when handling publishing mqtt messages sent via websocket.
604 lines
18 KiB
Python
Executable File
604 lines
18 KiB
Python
Executable File
import datetime
|
|
import itertools
|
|
import logging
|
|
import multiprocessing as mp
|
|
import queue
|
|
import subprocess as sp
|
|
import signal
|
|
import threading
|
|
import time
|
|
from collections import defaultdict
|
|
from setproctitle import setproctitle
|
|
from typing import Dict, List
|
|
|
|
from cv2 import cv2
|
|
import numpy as np
|
|
|
|
from frigate.config import CameraConfig
|
|
from frigate.edgetpu import RemoteObjectDetector
|
|
from frigate.log import LogPipe
|
|
from frigate.motion import MotionDetector
|
|
from frigate.objects import ObjectTracker
|
|
from frigate.util import (
|
|
EventsPerSecond,
|
|
FrameManager,
|
|
SharedMemoryFrameManager,
|
|
calculate_region,
|
|
clipped,
|
|
listen,
|
|
yuv_region_2_rgb,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def filtered(obj, objects_to_track, object_filters):
|
|
object_name = obj[0]
|
|
|
|
if not object_name in objects_to_track:
|
|
return True
|
|
|
|
if object_name in object_filters:
|
|
obj_settings = object_filters[object_name]
|
|
|
|
# if the min area is larger than the
|
|
# detected object, don't add it to detected objects
|
|
if obj_settings.min_area > obj[3]:
|
|
return True
|
|
|
|
# if the detected object is larger than the
|
|
# max area, don't add it to detected objects
|
|
if obj_settings.max_area < obj[3]:
|
|
return True
|
|
|
|
# if the score is lower than the min_score, skip
|
|
if obj_settings.min_score > obj[1]:
|
|
return True
|
|
|
|
if not obj_settings.mask is None:
|
|
# compute the coordinates of the object and make sure
|
|
# the location isnt outside the bounds of the image (can happen from rounding)
|
|
y_location = min(int(obj[2][3]), len(obj_settings.mask) - 1)
|
|
x_location = min(
|
|
int((obj[2][2] - obj[2][0]) / 2.0) + obj[2][0],
|
|
len(obj_settings.mask[0]) - 1,
|
|
)
|
|
|
|
# if the object is in a masked location, don't add it to detected objects
|
|
if obj_settings.mask[y_location][x_location] == 0:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def create_tensor_input(frame, model_shape, region):
|
|
cropped_frame = yuv_region_2_rgb(frame, region)
|
|
|
|
# Resize to 300x300 if needed
|
|
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
|
|
cropped_frame = cv2.resize(
|
|
cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR
|
|
)
|
|
|
|
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
|
return np.expand_dims(cropped_frame, axis=0)
|
|
|
|
|
|
def stop_ffmpeg(ffmpeg_process, logger):
|
|
logger.info("Terminating the existing ffmpeg process...")
|
|
ffmpeg_process.terminate()
|
|
try:
|
|
logger.info("Waiting for ffmpeg to exit gracefully...")
|
|
ffmpeg_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
logger.info("FFmpeg didnt exit. Force killing...")
|
|
ffmpeg_process.kill()
|
|
ffmpeg_process.communicate()
|
|
ffmpeg_process = None
|
|
|
|
|
|
def start_or_restart_ffmpeg(
|
|
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
|
|
):
|
|
if ffmpeg_process is not None:
|
|
stop_ffmpeg(ffmpeg_process, logger)
|
|
|
|
if frame_size is None:
|
|
process = sp.Popen(
|
|
ffmpeg_cmd,
|
|
stdout=sp.DEVNULL,
|
|
stderr=logpipe,
|
|
stdin=sp.DEVNULL,
|
|
start_new_session=True,
|
|
)
|
|
else:
|
|
process = sp.Popen(
|
|
ffmpeg_cmd,
|
|
stdout=sp.PIPE,
|
|
stderr=logpipe,
|
|
stdin=sp.DEVNULL,
|
|
bufsize=frame_size * 10,
|
|
start_new_session=True,
|
|
)
|
|
return process
|
|
|
|
|
|
def capture_frames(
|
|
ffmpeg_process,
|
|
camera_name,
|
|
frame_shape,
|
|
frame_manager: FrameManager,
|
|
frame_queue,
|
|
fps: mp.Value,
|
|
skipped_fps: mp.Value,
|
|
current_frame: mp.Value,
|
|
):
|
|
|
|
frame_size = frame_shape[0] * frame_shape[1]
|
|
frame_rate = EventsPerSecond()
|
|
frame_rate.start()
|
|
skipped_eps = EventsPerSecond()
|
|
skipped_eps.start()
|
|
while True:
|
|
fps.value = frame_rate.eps()
|
|
skipped_fps = skipped_eps.eps()
|
|
|
|
current_frame.value = datetime.datetime.now().timestamp()
|
|
frame_name = f"{camera_name}{current_frame.value}"
|
|
frame_buffer = frame_manager.create(frame_name, frame_size)
|
|
try:
|
|
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
|
|
except Exception as e:
|
|
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
|
|
|
|
if ffmpeg_process.poll() != None:
|
|
logger.info(
|
|
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
|
|
)
|
|
frame_manager.delete(frame_name)
|
|
break
|
|
continue
|
|
|
|
frame_rate.update()
|
|
|
|
# if the queue is full, skip this frame
|
|
if frame_queue.full():
|
|
skipped_eps.update()
|
|
frame_manager.delete(frame_name)
|
|
continue
|
|
|
|
# close the frame
|
|
frame_manager.close(frame_name)
|
|
|
|
# add to the queue
|
|
frame_queue.put(current_frame.value)
|
|
|
|
|
|
class CameraWatchdog(threading.Thread):
|
|
def __init__(
|
|
self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event
|
|
):
|
|
threading.Thread.__init__(self)
|
|
self.logger = logging.getLogger(f"watchdog.{camera_name}")
|
|
self.camera_name = camera_name
|
|
self.config = config
|
|
self.capture_thread = None
|
|
self.ffmpeg_detect_process = None
|
|
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
|
|
self.ffmpeg_other_processes = []
|
|
self.camera_fps = camera_fps
|
|
self.ffmpeg_pid = ffmpeg_pid
|
|
self.frame_queue = frame_queue
|
|
self.frame_shape = self.config.frame_shape_yuv
|
|
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
|
|
self.stop_event = stop_event
|
|
|
|
def run(self):
|
|
self.start_ffmpeg_detect()
|
|
|
|
for c in self.config.ffmpeg_cmds:
|
|
if "detect" in c["roles"]:
|
|
continue
|
|
logpipe = LogPipe(
|
|
f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}",
|
|
logging.ERROR,
|
|
)
|
|
self.ffmpeg_other_processes.append(
|
|
{
|
|
"cmd": c["cmd"],
|
|
"logpipe": logpipe,
|
|
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
|
|
}
|
|
)
|
|
|
|
time.sleep(10)
|
|
while not self.stop_event.wait(10):
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
if not self.capture_thread.is_alive():
|
|
self.logpipe.dump()
|
|
self.start_ffmpeg_detect()
|
|
elif now - self.capture_thread.current_frame.value > 20:
|
|
self.logger.info(
|
|
f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..."
|
|
)
|
|
self.ffmpeg_detect_process.terminate()
|
|
try:
|
|
self.logger.info("Waiting for ffmpeg to exit gracefully...")
|
|
self.ffmpeg_detect_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
self.logger.info("FFmpeg didnt exit. Force killing...")
|
|
self.ffmpeg_detect_process.kill()
|
|
self.ffmpeg_detect_process.communicate()
|
|
|
|
for p in self.ffmpeg_other_processes:
|
|
poll = p["process"].poll()
|
|
if poll == None:
|
|
continue
|
|
p["logpipe"].dump()
|
|
p["process"] = start_or_restart_ffmpeg(
|
|
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
|
|
)
|
|
|
|
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
|
|
for p in self.ffmpeg_other_processes:
|
|
stop_ffmpeg(p["process"], self.logger)
|
|
p["logpipe"].close()
|
|
self.logpipe.close()
|
|
|
|
def start_ffmpeg_detect(self):
|
|
ffmpeg_cmd = [
|
|
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
|
|
][0]
|
|
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
|
|
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
|
|
)
|
|
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
|
|
self.capture_thread = CameraCapture(
|
|
self.camera_name,
|
|
self.ffmpeg_detect_process,
|
|
self.frame_shape,
|
|
self.frame_queue,
|
|
self.camera_fps,
|
|
)
|
|
self.capture_thread.start()
|
|
|
|
|
|
class CameraCapture(threading.Thread):
|
|
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
|
|
threading.Thread.__init__(self)
|
|
self.name = f"capture:{camera_name}"
|
|
self.camera_name = camera_name
|
|
self.frame_shape = frame_shape
|
|
self.frame_queue = frame_queue
|
|
self.fps = fps
|
|
self.skipped_fps = EventsPerSecond()
|
|
self.frame_manager = SharedMemoryFrameManager()
|
|
self.ffmpeg_process = ffmpeg_process
|
|
self.current_frame = mp.Value("d", 0.0)
|
|
self.last_frame = 0
|
|
|
|
def run(self):
|
|
self.skipped_fps.start()
|
|
capture_frames(
|
|
self.ffmpeg_process,
|
|
self.camera_name,
|
|
self.frame_shape,
|
|
self.frame_manager,
|
|
self.frame_queue,
|
|
self.fps,
|
|
self.skipped_fps,
|
|
self.current_frame,
|
|
)
|
|
|
|
|
|
def capture_camera(name, config: CameraConfig, process_info):
|
|
stop_event = mp.Event()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
stop_event.set()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
frame_queue = process_info["frame_queue"]
|
|
camera_watchdog = CameraWatchdog(
|
|
name,
|
|
config,
|
|
frame_queue,
|
|
process_info["camera_fps"],
|
|
process_info["ffmpeg_pid"],
|
|
stop_event,
|
|
)
|
|
camera_watchdog.start()
|
|
camera_watchdog.join()
|
|
|
|
|
|
def track_camera(
|
|
name,
|
|
config: CameraConfig,
|
|
model_shape,
|
|
detection_queue,
|
|
result_connection,
|
|
detected_objects_queue,
|
|
process_info,
|
|
):
|
|
stop_event = mp.Event()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
stop_event.set()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
threading.current_thread().name = f"process:{name}"
|
|
setproctitle(f"frigate.process:{name}")
|
|
listen()
|
|
|
|
frame_queue = process_info["frame_queue"]
|
|
detection_enabled = process_info["detection_enabled"]
|
|
|
|
frame_shape = config.frame_shape
|
|
objects_to_track = config.objects.track
|
|
object_filters = config.objects.filters
|
|
|
|
motion_detector = MotionDetector(frame_shape, config.motion)
|
|
object_detector = RemoteObjectDetector(
|
|
name, "/labelmap.txt", detection_queue, result_connection, model_shape
|
|
)
|
|
|
|
object_tracker = ObjectTracker(config.detect)
|
|
|
|
frame_manager = SharedMemoryFrameManager()
|
|
|
|
process_frames(
|
|
name,
|
|
frame_queue,
|
|
frame_shape,
|
|
model_shape,
|
|
frame_manager,
|
|
motion_detector,
|
|
object_detector,
|
|
object_tracker,
|
|
detected_objects_queue,
|
|
process_info,
|
|
objects_to_track,
|
|
object_filters,
|
|
detection_enabled,
|
|
stop_event,
|
|
)
|
|
|
|
logger.info(f"{name}: exiting subprocess")
|
|
|
|
|
|
def reduce_boxes(boxes):
|
|
if len(boxes) == 0:
|
|
return []
|
|
reduced_boxes = cv2.groupRectangles(
|
|
[list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2
|
|
)[0]
|
|
return [tuple(b) for b in reduced_boxes]
|
|
|
|
|
|
# modified from https://stackoverflow.com/a/40795835
|
|
def intersects_any(box_a, boxes):
|
|
for box in boxes:
|
|
if (
|
|
box_a[2] < box[0]
|
|
or box_a[0] > box[2]
|
|
or box_a[1] > box[3]
|
|
or box_a[3] < box[1]
|
|
):
|
|
continue
|
|
return True
|
|
|
|
|
|
def detect(
|
|
object_detector, frame, model_shape, region, objects_to_track, object_filters
|
|
):
|
|
tensor_input = create_tensor_input(frame, model_shape, region)
|
|
|
|
detections = []
|
|
region_detections = object_detector.detect(tensor_input)
|
|
for d in region_detections:
|
|
box = d[2]
|
|
size = region[2] - region[0]
|
|
x_min = int((box[1] * size) + region[0])
|
|
y_min = int((box[0] * size) + region[1])
|
|
x_max = int((box[3] * size) + region[0])
|
|
y_max = int((box[2] * size) + region[1])
|
|
det = (
|
|
d[0],
|
|
d[1],
|
|
(x_min, y_min, x_max, y_max),
|
|
(x_max - x_min) * (y_max - y_min),
|
|
region,
|
|
)
|
|
# apply object filters
|
|
if filtered(det, objects_to_track, object_filters):
|
|
continue
|
|
detections.append(det)
|
|
return detections
|
|
|
|
|
|
def process_frames(
|
|
camera_name: str,
|
|
frame_queue: mp.Queue,
|
|
frame_shape,
|
|
model_shape,
|
|
frame_manager: FrameManager,
|
|
motion_detector: MotionDetector,
|
|
object_detector: RemoteObjectDetector,
|
|
object_tracker: ObjectTracker,
|
|
detected_objects_queue: mp.Queue,
|
|
process_info: Dict,
|
|
objects_to_track: List[str],
|
|
object_filters,
|
|
detection_enabled: mp.Value,
|
|
stop_event,
|
|
exit_on_empty: bool = False,
|
|
):
|
|
|
|
fps = process_info["process_fps"]
|
|
detection_fps = process_info["detection_fps"]
|
|
current_frame_time = process_info["detection_frame"]
|
|
|
|
fps_tracker = EventsPerSecond()
|
|
fps_tracker.start()
|
|
|
|
while not stop_event.is_set():
|
|
if exit_on_empty and frame_queue.empty():
|
|
logger.info(f"Exiting track_objects...")
|
|
break
|
|
|
|
try:
|
|
frame_time = frame_queue.get(True, 10)
|
|
except queue.Empty:
|
|
continue
|
|
|
|
current_frame_time.value = frame_time
|
|
|
|
frame = frame_manager.get(
|
|
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
|
|
)
|
|
|
|
if frame is None:
|
|
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
|
|
continue
|
|
|
|
if not detection_enabled.value:
|
|
fps.value = fps_tracker.eps()
|
|
object_tracker.match_and_update(frame_time, [])
|
|
detected_objects_queue.put(
|
|
(camera_name, frame_time, object_tracker.tracked_objects, [], [])
|
|
)
|
|
detection_fps.value = object_detector.fps.eps()
|
|
frame_manager.close(f"{camera_name}{frame_time}")
|
|
continue
|
|
|
|
# look for motion
|
|
motion_boxes = motion_detector.detect(frame)
|
|
|
|
# only get the tracked object boxes that intersect with motion
|
|
tracked_object_boxes = [
|
|
obj["box"]
|
|
for obj in object_tracker.tracked_objects.values()
|
|
if intersects_any(obj["box"], motion_boxes)
|
|
]
|
|
|
|
# combine motion boxes with known locations of existing objects
|
|
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
|
|
|
|
# compute regions
|
|
regions = [
|
|
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
|
|
for a in combined_boxes
|
|
]
|
|
|
|
# combine overlapping regions
|
|
combined_regions = reduce_boxes(regions)
|
|
|
|
# re-compute regions
|
|
regions = [
|
|
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
|
|
for a in combined_regions
|
|
]
|
|
|
|
# resize regions and detect
|
|
detections = []
|
|
for region in regions:
|
|
detections.extend(
|
|
detect(
|
|
object_detector,
|
|
frame,
|
|
model_shape,
|
|
region,
|
|
objects_to_track,
|
|
object_filters,
|
|
)
|
|
)
|
|
|
|
#########
|
|
# merge objects, check for clipped objects and look again up to 4 times
|
|
#########
|
|
refining = True
|
|
refine_count = 0
|
|
while refining and refine_count < 4:
|
|
refining = False
|
|
|
|
# group by name
|
|
detected_object_groups = defaultdict(lambda: [])
|
|
for detection in detections:
|
|
detected_object_groups[detection[0]].append(detection)
|
|
|
|
selected_objects = []
|
|
for group in detected_object_groups.values():
|
|
|
|
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
|
boxes = [
|
|
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
|
|
for o in group
|
|
]
|
|
confidences = [o[1] for o in group]
|
|
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
|
|
|
for index in idxs:
|
|
obj = group[index[0]]
|
|
if clipped(obj, frame_shape):
|
|
box = obj[2]
|
|
# calculate a new region that will hopefully get the entire object
|
|
region = calculate_region(
|
|
frame_shape, box[0], box[1], box[2], box[3]
|
|
)
|
|
|
|
regions.append(region)
|
|
|
|
selected_objects.extend(
|
|
detect(
|
|
object_detector,
|
|
frame,
|
|
model_shape,
|
|
region,
|
|
objects_to_track,
|
|
object_filters,
|
|
)
|
|
)
|
|
|
|
refining = True
|
|
else:
|
|
selected_objects.append(obj)
|
|
# set the detections list to only include top, complete objects
|
|
# and new detections
|
|
detections = selected_objects
|
|
|
|
if refining:
|
|
refine_count += 1
|
|
|
|
# Limit to the detections overlapping with motion areas
|
|
# to avoid picking up stationary background objects
|
|
detections_with_motion = [
|
|
d for d in detections if intersects_any(d[2], motion_boxes)
|
|
]
|
|
|
|
# now that we have refined our detections, we need to track objects
|
|
object_tracker.match_and_update(frame_time, detections_with_motion)
|
|
|
|
# add to the queue if not full
|
|
if detected_objects_queue.full():
|
|
frame_manager.delete(f"{camera_name}{frame_time}")
|
|
continue
|
|
else:
|
|
fps_tracker.update()
|
|
fps.value = fps_tracker.eps()
|
|
detected_objects_queue.put(
|
|
(
|
|
camera_name,
|
|
frame_time,
|
|
object_tracker.tracked_objects,
|
|
motion_boxes,
|
|
regions,
|
|
)
|
|
)
|
|
detection_fps.value = object_detector.fps.eps()
|
|
frame_manager.close(f"{camera_name}{frame_time}")
|