mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-02 00:07:11 +01:00
3f05f74ecb
* Initial WIP dockerfile and scripts to add tensorrt support * Add tensorRT detector * WIP attempt to install TensorRT 8.5 * Updates to detector for cuda python library * TensorRT Cuda library rework WIP Does not run * Fixes from rebase to detector factory * Fix parsing output memory pointer * Handle TensorRT logs with the python logger * Use non-async interface and convert input data to float32. Detection runs without error. * Make TensorRT a separate build from the base Frigate image. * Add script and documentation for generating TRT Models * Add support for TensorRT devcontainer * Add labelmap to trt model script and docs. Cleanup of old scripts. * Update detect to normalize input tensor using model input type * Add config for selecting GPU. Fix Async inference. Update documentation. * Update some CUDA libraries to clean up version warning * Add CI stage to build TensorRT tag * Add note in docs for image tag and model support
37 lines
1.1 KiB
Bash
Executable File
37 lines
1.1 KiB
Bash
Executable File
#!/bin/bash
|
|
|
|
set -euxo pipefail
|
|
|
|
CUDA_HOME=/usr/local/cuda
|
|
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64
|
|
OUTPUT_FOLDER=/tensorrt_models
|
|
echo "Generating the following TRT Models: ${YOLO_MODELS:="yolov4-tiny-288,yolov4-tiny-416,yolov7-tiny-416"}"
|
|
|
|
# Create output folder
|
|
mkdir -p ${OUTPUT_FOLDER}
|
|
|
|
# Install packages
|
|
pip install --upgrade pip && pip install onnx==1.9.0 protobuf==3.20.3
|
|
|
|
# Clone tensorrt_demos repo
|
|
git clone --depth 1 https://github.com/yeahme49/tensorrt_demos.git /tensorrt_demos
|
|
|
|
# Build libyolo
|
|
cd /tensorrt_demos/plugins && make all
|
|
cp libyolo_layer.so ${OUTPUT_FOLDER}/libyolo_layer.so
|
|
|
|
# Download yolo weights
|
|
cd /tensorrt_demos/yolo && ./download_yolo.sh
|
|
|
|
# Build trt engine
|
|
cd /tensorrt_demos/yolo
|
|
|
|
for model in ${YOLO_MODELS//,/ }
|
|
do
|
|
python3 yolo_to_onnx.py -m ${model}
|
|
python3 onnx_to_tensorrt.py -m ${model}
|
|
cp /tensorrt_demos/yolo/${model}.trt ${OUTPUT_FOLDER}/${model}.trt;
|
|
done
|
|
|
|
# Download Labelmap
|
|
wget -q https://github.com/openvinotoolkit/open_model_zoo/raw/master/data/dataset_classes/coco_91cl.txt -O ${OUTPUT_FOLDER}/coco_91cl.txt |