blakeblackshear.frigate/frigate/detectors/util.py
harakas 44d8cdbba1
AMD GPU support with the rocm detector and YOLOv8 pretrained model download (#9762)
* ROCm AMD/GPU based build and detector, WIP

* detectors/rocm: separate yolov8 postprocessing into own function; fix box scaling; use cv2.dnn.blobForImage for preprocessing; assert on required model parameters

* AMD/ROCm: add couple of more ultralytics models; comments

* docker/rocm: make imported model files readable by all

* docker/rocm: readme about running on AMD GPUs

* docker/rocm: updated README

* docker/rocm: updated README

* docker/rocm: updated README

* detectors/rocm: separated preprocessing functions into yolo_utils.py

* detector/plugins: added onnx cpu plugin

* docker/rocm: updated container with limite label sets

* example detectors view

* docker/rocm: updated README.md

* docker/rocm: update README.md

* docker/rocm: do not set HSA_OVERRIDE_GFX_VERSION at all for the general version as the empty value broke rocm

* detectors: simplified/optimized yolov8_postprocess

* detector/yolo_utils: indentation, remove unused variable

* detectors/rocm: default option to conserve cpu usage at the expense of latency

* detectors/yolo_utils: use nms to prefilter overlapping boxes if too many detected

* detectors/edgetpu_tfl: add support for yolov8

* util/download_models: script to download yolov8 model files

* docker/main: add download-models overlay into s6 startup

* detectors/rocm: assume models are in /config/model_cache/yolov8/

* docker/rocm: compile onnx files into mxr files at startup

* switch model download into bash script

* detectors/rocm: automatically override HSA_OVERRIDE_GFX_VERSION for couple of known chipsets

* docs: rocm detector first notes

* typos

* describe builds (harakas temporary)

* docker/rocm: also build a version for gfx1100

* docker/rocm: use cp instead of tar

* docker.rocm: remove README as it is now in detector config

* frigate/detectors: renamed yolov8_preprocess->preprocess, pass input tensor element type

* docker/main: use newer openvino (2023.3.0)

* detectors: implement class aggregation

* update yolov8 model

* add openvino/yolov8 support for label aggregation

* docker: remove pointless s6/timeout-up files

* Revert "detectors: implement class aggregation"

This reverts commit dcfe6bbf6f.

* detectors/openvino: remove class aggregation

* detectors: increase yolov8 postprocessing score trershold to 0.5

* docker/rocm: separate rocm distributed files into its own build stage

* Update object_detectors.md

* updated CODEOWNERS file for rocm

* updated build names for documentation

* Revert "docker/main: use newer openvino (2023.3.0)"

This reverts commit dee95de908.

* reverrted openvino detector

* reverted edgetpu detector

* scratched rocm docs from any mention of edgetpu or openvino

* Update docs/docs/configuration/object_detectors.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* renamed frigate.detectors.yolo_utils.py -> frigate.detectors.util.py

* clarified rocm example performance

* Improved wording and clarified text

* Mentioned rocm detector for AMD GPUs

* applied ruff formating

* applied ruff suggested fixes

* docker/rocm: fix missing argument resulting in larger docker image sizes

* docs/configuration/object_detectors: fix links to yolov8 release files

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2024-02-10 06:41:46 -06:00

84 lines
2.9 KiB
Python

import logging
import cv2
import numpy as np
logger = logging.getLogger(__name__)
def preprocess(tensor_input, model_input_shape, model_input_element_type):
model_input_shape = tuple(model_input_shape)
assert tensor_input.dtype == np.uint8, f"tensor_input.dtype: {tensor_input.dtype}"
if len(tensor_input.shape) == 3:
tensor_input = tensor_input[np.newaxis, :]
if model_input_element_type == np.uint8:
# nothing to do for uint8 model input
assert (
model_input_shape == tensor_input.shape
), f"model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}"
return tensor_input
assert (
model_input_element_type == np.float32
), f"model_input_element_type: {model_input_element_type}"
# tensor_input must be nhwc
assert tensor_input.shape[3] == 3, f"tensor_input.shape: {tensor_input.shape}"
if tensor_input.shape[1:3] != model_input_shape[2:4]:
logger.warn(
f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!"
)
# cv2.dnn.blobFromImage is faster than numpying it
return cv2.dnn.blobFromImage(
tensor_input[0],
1.0 / 255,
(model_input_shape[3], model_input_shape[2]),
None,
swapRB=False,
)
def yolov8_postprocess(
model_input_shape,
tensor_output,
box_count=20,
score_threshold=0.5,
nms_threshold=0.5,
):
model_box_count = tensor_output.shape[2]
probs = tensor_output[0, 4:, :]
all_ids = np.argmax(probs, axis=0)
all_confidences = probs.T[np.arange(model_box_count), all_ids]
all_boxes = tensor_output[0, 0:4, :].T
mask = all_confidences > score_threshold
class_ids = all_ids[mask]
confidences = all_confidences[mask]
cx, cy, w, h = all_boxes[mask].T
if model_input_shape[3] == 3:
scale_y, scale_x = 1 / model_input_shape[1], 1 / model_input_shape[2]
else:
scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
detections = np.stack(
(
class_ids,
confidences,
scale_y * (cy - h / 2),
scale_x * (cx - w / 2),
scale_y * (cy + h / 2),
scale_x * (cx + w / 2),
),
axis=1,
)
if detections.shape[0] > box_count:
# if too many detections, do nms filtering to suppress overlapping boxes
boxes = np.stack((cx - w / 2, cy - h / 2, w, h), axis=1)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, score_threshold, nms_threshold)
detections = detections[indexes]
# if still too many, trim the rest by confidence
if detections.shape[0] > box_count:
detections = detections[
np.argpartition(detections[:, 1], -box_count)[-box_count:]
]
detections = detections.copy()
detections.resize((box_count, 6))
return detections