mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-21 00:06:44 +01:00
455 lines
18 KiB
Python
455 lines
18 KiB
Python
import os
|
|
import signal
|
|
import sys
|
|
import traceback
|
|
import signal
|
|
import cv2
|
|
import time
|
|
import datetime
|
|
import queue
|
|
import yaml
|
|
import threading
|
|
import multiprocessing as mp
|
|
import subprocess as sp
|
|
import numpy as np
|
|
import logging
|
|
from flask import Flask, Response, make_response, jsonify, request
|
|
import paho.mqtt.client as mqtt
|
|
|
|
from frigate.video import track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
|
|
from frigate.object_processing import TrackedObjectProcessor
|
|
from frigate.events import EventProcessor
|
|
from frigate.util import EventsPerSecond
|
|
from frigate.edgetpu import EdgeTPUProcess
|
|
|
|
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
|
|
|
with open('/config/config.yml') as f:
|
|
CONFIG = yaml.safe_load(f)
|
|
|
|
MQTT_HOST = CONFIG['mqtt']['host']
|
|
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
|
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
|
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
|
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
|
if not MQTT_PASS is None:
|
|
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
|
|
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
|
|
|
|
# Set the default FFmpeg config
|
|
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
|
|
FFMPEG_DEFAULT_CONFIG = {
|
|
'global_args': FFMPEG_CONFIG.get('global_args',
|
|
['-hide_banner','-loglevel','panic']),
|
|
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
|
[]),
|
|
'input_args': FFMPEG_CONFIG.get('input_args',
|
|
['-avoid_negative_ts', 'make_zero',
|
|
'-fflags', 'nobuffer',
|
|
'-flags', 'low_delay',
|
|
'-strict', 'experimental',
|
|
'-fflags', '+genpts+discardcorrupt',
|
|
'-rtsp_transport', 'tcp',
|
|
'-stimeout', '5000000',
|
|
'-use_wallclock_as_timestamps', '1']),
|
|
'output_args': FFMPEG_CONFIG.get('output_args',
|
|
['-f', 'rawvideo',
|
|
'-pix_fmt', 'rgb24'])
|
|
}
|
|
|
|
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
|
|
|
|
WEB_PORT = CONFIG.get('web_port', 5000)
|
|
DEBUG = (CONFIG.get('debug', '0') == '1')
|
|
TENSORFLOW_DEVICE = CONFIG.get('tensorflow_device')
|
|
|
|
def start_plasma_store():
|
|
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
|
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
|
|
time.sleep(1)
|
|
rc = plasma_process.poll()
|
|
if rc is not None:
|
|
return None
|
|
return plasma_process
|
|
|
|
class CameraWatchdog(threading.Thread):
|
|
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, plasma_process, stop_event):
|
|
threading.Thread.__init__(self)
|
|
self.camera_processes = camera_processes
|
|
self.config = config
|
|
self.tflite_process = tflite_process
|
|
self.tracked_objects_queue = tracked_objects_queue
|
|
self.plasma_process = plasma_process
|
|
self.stop_event = stop_event
|
|
|
|
def run(self):
|
|
time.sleep(10)
|
|
while True:
|
|
# wait a bit before checking
|
|
time.sleep(10)
|
|
|
|
if self.stop_event.is_set():
|
|
print(f"Exiting watchdog...")
|
|
break
|
|
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
# check the plasma process
|
|
rc = self.plasma_process.poll()
|
|
if rc != None:
|
|
print(f"plasma_process exited unexpectedly with {rc}")
|
|
self.plasma_process = start_plasma_store()
|
|
|
|
# check the detection process
|
|
detection_start = self.tflite_process.detection_start.value
|
|
if (detection_start > 0.0 and
|
|
now - detection_start > 10):
|
|
print("Detection appears to be stuck. Restarting detection process")
|
|
self.tflite_process.start_or_restart()
|
|
elif not self.tflite_process.detect_process.is_alive():
|
|
print("Detection appears to have stopped. Restarting detection process")
|
|
self.tflite_process.start_or_restart()
|
|
|
|
# check the camera processes
|
|
for name, camera_process in self.camera_processes.items():
|
|
process = camera_process['process']
|
|
if not process.is_alive():
|
|
print(f"Track process for {name} is not alive. Starting again...")
|
|
camera_process['process_fps'].value = 0.0
|
|
camera_process['detection_fps'].value = 0.0
|
|
camera_process['read_start'].value = 0.0
|
|
process = mp.Process(target=track_camera, args=(name, self.config[name], GLOBAL_OBJECT_CONFIG, camera_process['frame_queue'],
|
|
camera_process['frame_shape'], self.tflite_process.detection_queue, self.tracked_objects_queue,
|
|
camera_process['process_fps'], camera_process['detection_fps'],
|
|
camera_process['read_start'], camera_process['detection_frame'], self.stop_event))
|
|
process.daemon = True
|
|
camera_process['process'] = process
|
|
process.start()
|
|
print(f"Track process started for {name}: {process.pid}")
|
|
|
|
if not camera_process['capture_thread'].is_alive():
|
|
frame_shape = camera_process['frame_shape']
|
|
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
ffmpeg_process = start_or_restart_ffmpeg(camera_process['ffmpeg_cmd'], frame_size)
|
|
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, camera_process['frame_queue'],
|
|
camera_process['take_frame'], camera_process['camera_fps'], camera_process['detection_frame'], self.stop_event)
|
|
camera_capture.start()
|
|
camera_process['ffmpeg_process'] = ffmpeg_process
|
|
camera_process['capture_thread'] = camera_capture
|
|
elif now - camera_process['capture_thread'].current_frame.value > 5:
|
|
print(f"No frames received from {name} in 5 seconds. Exiting ffmpeg...")
|
|
ffmpeg_process = camera_process['ffmpeg_process']
|
|
ffmpeg_process.terminate()
|
|
try:
|
|
print("Waiting for ffmpeg to exit gracefully...")
|
|
ffmpeg_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
print("FFmpeg didnt exit. Force killing...")
|
|
ffmpeg_process.kill()
|
|
ffmpeg_process.communicate()
|
|
|
|
def main():
|
|
stop_event = threading.Event()
|
|
# connect to mqtt and setup last will
|
|
def on_connect(client, userdata, flags, rc):
|
|
print("On connect called")
|
|
if rc != 0:
|
|
if rc == 3:
|
|
print ("MQTT Server unavailable")
|
|
elif rc == 4:
|
|
print ("MQTT Bad username or password")
|
|
elif rc == 5:
|
|
print ("MQTT Not authorized")
|
|
else:
|
|
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
|
|
# publish a message to signal that the service is running
|
|
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
|
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
|
|
client.on_connect = on_connect
|
|
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
|
if not MQTT_USER is None:
|
|
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
|
|
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
|
client.loop_start()
|
|
|
|
plasma_process = start_plasma_store()
|
|
|
|
##
|
|
# Setup config defaults for cameras
|
|
##
|
|
for name, config in CONFIG['cameras'].items():
|
|
config['snapshots'] = {
|
|
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
|
|
'draw_zones': config.get('snapshots', {}).get('draw_zones', False)
|
|
}
|
|
config['zones'] = {}
|
|
|
|
# Queue for cameras to push tracked objects to
|
|
tracked_objects_queue = mp.Queue()
|
|
|
|
# Queue for clip processing
|
|
event_queue = mp.Queue()
|
|
|
|
# Start the shared tflite process
|
|
tflite_process = EdgeTPUProcess(TENSORFLOW_DEVICE)
|
|
|
|
# start the camera processes
|
|
camera_processes = {}
|
|
for name, config in CONFIG['cameras'].items():
|
|
# Merge the ffmpeg config with the global config
|
|
ffmpeg = config.get('ffmpeg', {})
|
|
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
|
|
ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
|
|
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
|
|
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
|
|
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
|
|
if config.get('save_clips', {}).get('enabled', False):
|
|
ffmpeg_output_args = [
|
|
"-f",
|
|
"segment",
|
|
"-segment_time",
|
|
"10",
|
|
"-segment_format",
|
|
"mp4",
|
|
"-reset_timestamps",
|
|
"1",
|
|
"-strftime",
|
|
"1",
|
|
"-c",
|
|
"copy",
|
|
"-an",
|
|
"-map",
|
|
"0",
|
|
f"/cache/{name}-%Y%m%d%H%M%S.mp4"
|
|
] + ffmpeg_output_args
|
|
ffmpeg_cmd = (['ffmpeg'] +
|
|
ffmpeg_global_args +
|
|
ffmpeg_hwaccel_args +
|
|
ffmpeg_input_args +
|
|
['-i', ffmpeg_input] +
|
|
ffmpeg_output_args +
|
|
['pipe:'])
|
|
|
|
if 'width' in config and 'height' in config:
|
|
frame_shape = (config['height'], config['width'], 3)
|
|
else:
|
|
frame_shape = get_frame_shape(ffmpeg_input)
|
|
|
|
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
take_frame = config.get('take_frame', 1)
|
|
|
|
detection_frame = mp.Value('d', 0.0)
|
|
|
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
|
|
frame_queue = mp.Queue()
|
|
camera_fps = EventsPerSecond()
|
|
camera_fps.start()
|
|
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps, detection_frame, stop_event)
|
|
camera_capture.start()
|
|
|
|
camera_processes[name] = {
|
|
'camera_fps': camera_fps,
|
|
'take_frame': take_frame,
|
|
'process_fps': mp.Value('d', 0.0),
|
|
'detection_fps': mp.Value('d', 0.0),
|
|
'detection_frame': detection_frame,
|
|
'read_start': mp.Value('d', 0.0),
|
|
'ffmpeg_process': ffmpeg_process,
|
|
'ffmpeg_cmd': ffmpeg_cmd,
|
|
'frame_queue': frame_queue,
|
|
'frame_shape': frame_shape,
|
|
'capture_thread': camera_capture
|
|
}
|
|
|
|
# merge global object config into camera object config
|
|
camera_objects_config = config.get('objects', {})
|
|
# get objects to track for camera
|
|
objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person']))
|
|
# merge object filters
|
|
global_object_filters = GLOBAL_OBJECT_CONFIG.get('filters', {})
|
|
camera_object_filters = camera_objects_config.get('filters', {})
|
|
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
|
object_filters = {}
|
|
for obj in objects_with_config:
|
|
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
|
config['objects'] = {
|
|
'track': objects_to_track,
|
|
'filters': object_filters
|
|
}
|
|
|
|
camera_process = mp.Process(target=track_camera, args=(name, config, frame_queue, frame_shape,
|
|
tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['process_fps'],
|
|
camera_processes[name]['detection_fps'],
|
|
camera_processes[name]['read_start'], camera_processes[name]['detection_frame'], stop_event))
|
|
camera_process.daemon = True
|
|
camera_processes[name]['process'] = camera_process
|
|
|
|
for name, camera_process in camera_processes.items():
|
|
camera_process['process'].start()
|
|
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
|
|
|
|
event_processor = EventProcessor(CONFIG['cameras'], camera_processes, '/cache', '/clips', event_queue, stop_event)
|
|
event_processor.start()
|
|
|
|
object_processor = TrackedObjectProcessor(CONFIG['cameras'], CONFIG.get('zones', {}), client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
|
|
object_processor.start()
|
|
|
|
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process, stop_event)
|
|
camera_watchdog.start()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
print('Received:', signalNumber)
|
|
stop_event.set()
|
|
event_processor.join()
|
|
object_processor.join()
|
|
camera_watchdog.join()
|
|
for name, camera_process in camera_processes.items():
|
|
camera_process['capture_thread'].join()
|
|
rc = camera_watchdog.plasma_process.poll()
|
|
if rc == None:
|
|
camera_watchdog.plasma_process.terminate()
|
|
sys.exit()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
# create a flask app that encodes frames a mjpeg on demand
|
|
app = Flask(__name__)
|
|
log = logging.getLogger('werkzeug')
|
|
log.setLevel(logging.ERROR)
|
|
|
|
@app.route('/')
|
|
def ishealthy():
|
|
# return a healh
|
|
return "Frigate is running. Alive and healthy!"
|
|
|
|
@app.route('/debug/stack')
|
|
def processor_stack():
|
|
frame = sys._current_frames().get(object_processor.ident, None)
|
|
if frame:
|
|
return "<br>".join(traceback.format_stack(frame)), 200
|
|
else:
|
|
return "no frame found", 200
|
|
|
|
@app.route('/debug/print_stack')
|
|
def print_stack():
|
|
pid = int(request.args.get('pid', 0))
|
|
if pid == 0:
|
|
return "missing pid", 200
|
|
else:
|
|
os.kill(pid, signal.SIGUSR1)
|
|
return "check logs", 200
|
|
|
|
@app.route('/debug/stats')
|
|
def stats():
|
|
stats = {}
|
|
|
|
total_detection_fps = 0
|
|
|
|
for name, camera_stats in camera_processes.items():
|
|
total_detection_fps += camera_stats['detection_fps'].value
|
|
capture_thread = camera_stats['capture_thread']
|
|
stats[name] = {
|
|
'camera_fps': round(capture_thread.fps.eps(), 2),
|
|
'process_fps': round(camera_stats['process_fps'].value, 2),
|
|
'skipped_fps': round(capture_thread.skipped_fps.eps(), 2),
|
|
'detection_fps': round(camera_stats['detection_fps'].value, 2),
|
|
'read_start': camera_stats['read_start'].value,
|
|
'pid': camera_stats['process'].pid,
|
|
'ffmpeg_pid': camera_stats['ffmpeg_process'].pid,
|
|
'frame_info': {
|
|
'read': capture_thread.current_frame.value,
|
|
'detect': camera_stats['detection_frame'].value,
|
|
'process': object_processor.camera_data[name]['current_frame_time']
|
|
}
|
|
}
|
|
|
|
stats['coral'] = {
|
|
'fps': round(total_detection_fps, 2),
|
|
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
|
|
'detection_start': tflite_process.detection_start.value,
|
|
'pid': tflite_process.detect_process.pid
|
|
}
|
|
|
|
rc = camera_watchdog.plasma_process.poll()
|
|
stats['plasma_store_rc'] = rc
|
|
|
|
return jsonify(stats)
|
|
|
|
@app.route('/<camera_name>/<label>/best.jpg')
|
|
def best(camera_name, label):
|
|
if camera_name in CONFIG['cameras']:
|
|
best_frame = object_processor.get_best(camera_name, label)
|
|
if best_frame is None:
|
|
best_frame = np.zeros((720,1280,3), np.uint8)
|
|
|
|
height = int(request.args.get('h', str(best_frame.shape[0])))
|
|
width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
|
|
|
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
|
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
|
ret, jpg = cv2.imencode('.jpg', best_frame)
|
|
response = make_response(jpg.tobytes())
|
|
response.headers['Content-Type'] = 'image/jpg'
|
|
return response
|
|
else:
|
|
return "Camera named {} not found".format(camera_name), 404
|
|
|
|
@app.route('/<camera_name>')
|
|
def mjpeg_feed(camera_name):
|
|
fps = int(request.args.get('fps', '3'))
|
|
height = int(request.args.get('h', '360'))
|
|
if camera_name in CONFIG['cameras']:
|
|
# return a multipart response
|
|
return Response(imagestream(camera_name, fps, height),
|
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
else:
|
|
return "Camera named {} not found".format(camera_name), 404
|
|
|
|
@app.route('/<camera_name>/latest.jpg')
|
|
def latest_frame(camera_name):
|
|
if camera_name in CONFIG['cameras']:
|
|
# max out at specified FPS
|
|
frame = object_processor.get_current_frame(camera_name)
|
|
if frame is None:
|
|
frame = np.zeros((720,1280,3), np.uint8)
|
|
|
|
height = int(request.args.get('h', str(frame.shape[0])))
|
|
width = int(height*frame.shape[1]/frame.shape[0])
|
|
|
|
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
|
response = make_response(jpg.tobytes())
|
|
response.headers['Content-Type'] = 'image/jpg'
|
|
return response
|
|
else:
|
|
return "Camera named {} not found".format(camera_name), 404
|
|
|
|
def imagestream(camera_name, fps, height):
|
|
while True:
|
|
# max out at specified FPS
|
|
time.sleep(1/fps)
|
|
frame = object_processor.get_current_frame(camera_name)
|
|
if frame is None:
|
|
frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
|
|
|
width = int(height*frame.shape[1]/frame.shape[0])
|
|
|
|
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
|
yield (b'--frame\r\n'
|
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
|
|
|
object_processor.join()
|
|
|
|
plasma_process.terminate()
|
|
|
|
if __name__ == '__main__':
|
|
main()
|