mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
44d8cdbba1
* ROCm AMD/GPU based build and detector, WIP * detectors/rocm: separate yolov8 postprocessing into own function; fix box scaling; use cv2.dnn.blobForImage for preprocessing; assert on required model parameters * AMD/ROCm: add couple of more ultralytics models; comments * docker/rocm: make imported model files readable by all * docker/rocm: readme about running on AMD GPUs * docker/rocm: updated README * docker/rocm: updated README * docker/rocm: updated README * detectors/rocm: separated preprocessing functions into yolo_utils.py * detector/plugins: added onnx cpu plugin * docker/rocm: updated container with limite label sets * example detectors view * docker/rocm: updated README.md * docker/rocm: update README.md * docker/rocm: do not set HSA_OVERRIDE_GFX_VERSION at all for the general version as the empty value broke rocm * detectors: simplified/optimized yolov8_postprocess * detector/yolo_utils: indentation, remove unused variable * detectors/rocm: default option to conserve cpu usage at the expense of latency * detectors/yolo_utils: use nms to prefilter overlapping boxes if too many detected * detectors/edgetpu_tfl: add support for yolov8 * util/download_models: script to download yolov8 model files * docker/main: add download-models overlay into s6 startup * detectors/rocm: assume models are in /config/model_cache/yolov8/ * docker/rocm: compile onnx files into mxr files at startup * switch model download into bash script * detectors/rocm: automatically override HSA_OVERRIDE_GFX_VERSION for couple of known chipsets * docs: rocm detector first notes * typos * describe builds (harakas temporary) * docker/rocm: also build a version for gfx1100 * docker/rocm: use cp instead of tar * docker.rocm: remove README as it is now in detector config * frigate/detectors: renamed yolov8_preprocess->preprocess, pass input tensor element type * docker/main: use newer openvino (2023.3.0) * detectors: implement class aggregation * update yolov8 model * add openvino/yolov8 support for label aggregation * docker: remove pointless s6/timeout-up files * Revert "detectors: implement class aggregation" This reverts commitdcfe6bbf6f
. * detectors/openvino: remove class aggregation * detectors: increase yolov8 postprocessing score trershold to 0.5 * docker/rocm: separate rocm distributed files into its own build stage * Update object_detectors.md * updated CODEOWNERS file for rocm * updated build names for documentation * Revert "docker/main: use newer openvino (2023.3.0)" This reverts commitdee95de908
. * reverrted openvino detector * reverted edgetpu detector * scratched rocm docs from any mention of edgetpu or openvino * Update docs/docs/configuration/object_detectors.md Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * renamed frigate.detectors.yolo_utils.py -> frigate.detectors.util.py * clarified rocm example performance * Improved wording and clarified text * Mentioned rocm detector for AMD GPUs * applied ruff formating * applied ruff suggested fixes * docker/rocm: fix missing argument resulting in larger docker image sizes * docs/configuration/object_detectors: fix links to yolov8 release files --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
144 lines
5.2 KiB
Python
144 lines
5.2 KiB
Python
import ctypes
|
|
import glob
|
|
import logging
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
|
|
import numpy as np
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
|
from frigate.detectors.util import preprocess, yolov8_postprocess
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "rocm"
|
|
|
|
|
|
def detect_gfx_version():
|
|
return subprocess.getoutput(
|
|
"unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'"
|
|
)
|
|
|
|
|
|
def auto_override_gfx_version():
|
|
# If environment varialbe already in place, do not override
|
|
gfx_version = detect_gfx_version()
|
|
old_override = os.getenv("HSA_OVERRIDE_GFX_VERSION")
|
|
if old_override not in (None, ""):
|
|
logger.warning(
|
|
f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!"
|
|
)
|
|
return old_override
|
|
mapping = {
|
|
"gfx90c": "9.0.0",
|
|
"gfx1031": "10.3.0",
|
|
"gfx1103": "11.0.0",
|
|
}
|
|
override = mapping.get(gfx_version)
|
|
if override is not None:
|
|
logger.warning(
|
|
f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}"
|
|
)
|
|
os.putenv("HSA_OVERRIDE_GFX_VERSION", override)
|
|
return override
|
|
return ""
|
|
|
|
|
|
class ROCmDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
conserve_cpu: bool = Field(
|
|
default=True,
|
|
title="Conserve CPU at the expense of latency (and reduced max throughput)",
|
|
)
|
|
auto_override_gfx: bool = Field(
|
|
default=True, title="Automatically detect and override gfx version"
|
|
)
|
|
|
|
|
|
class ROCmDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: ROCmDetectorConfig):
|
|
if detector_config.auto_override_gfx:
|
|
auto_override_gfx_version()
|
|
|
|
try:
|
|
sys.path.append("/opt/rocm/lib")
|
|
import migraphx
|
|
|
|
logger.info("AMD/ROCm: loaded migraphx module")
|
|
except ModuleNotFoundError:
|
|
logger.error("AMD/ROCm: module loading failed, missing ROCm environment?")
|
|
raise
|
|
|
|
if detector_config.conserve_cpu:
|
|
logger.info("AMD/ROCm: switching HIP to blocking mode to conserve CPU")
|
|
ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4)
|
|
assert (
|
|
detector_config.model.model_type == "yolov8"
|
|
), "AMD/ROCm: detector_config.model.model_type: only yolov8 supported"
|
|
assert (
|
|
detector_config.model.input_tensor == "nhwc"
|
|
), "AMD/ROCm: detector_config.model.input_tensor: only nhwc supported"
|
|
if detector_config.model.input_pixel_format != "rgb":
|
|
logger.warn(
|
|
"AMD/ROCm: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!"
|
|
)
|
|
|
|
assert detector_config.model.path is not None, (
|
|
"No model.path configured, please configure model.path and model.labelmap_path; some suggestions: "
|
|
+ ", ".join(glob.glob("/config/model_cache/yolov8/*.onnx"))
|
|
+ " and "
|
|
+ ", ".join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
|
|
)
|
|
|
|
path = detector_config.model.path
|
|
mxr_path = os.path.splitext(path)[0] + ".mxr"
|
|
if path.endswith(".mxr"):
|
|
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
|
self.model = migraphx.load(mxr_path)
|
|
elif os.path.exists(mxr_path):
|
|
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
|
self.model = migraphx.load(mxr_path)
|
|
else:
|
|
logger.info(f"AMD/ROCm: loading model from {path}")
|
|
if path.endswith(".onnx"):
|
|
self.model = migraphx.parse_onnx(path)
|
|
elif (
|
|
path.endswith(".tf")
|
|
or path.endswith(".tf2")
|
|
or path.endswith(".tflite")
|
|
):
|
|
# untested
|
|
self.model = migraphx.parse_tf(path)
|
|
else:
|
|
raise Exception(f"AMD/ROCm: unkown model format {path}")
|
|
logger.info("AMD/ROCm: compiling the model")
|
|
self.model.compile(
|
|
migraphx.get_target("gpu"), offload_copy=True, fast_math=True
|
|
)
|
|
logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}")
|
|
os.makedirs("/config/model_cache/rocm", exist_ok=True)
|
|
migraphx.save(self.model, mxr_path)
|
|
logger.info("AMD/ROCm: model loaded")
|
|
|
|
def detect_raw(self, tensor_input):
|
|
model_input_name = self.model.get_parameter_names()[0]
|
|
model_input_shape = tuple(
|
|
self.model.get_parameter_shapes()[model_input_name].lens()
|
|
)
|
|
tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
|
|
|
|
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
|
|
|
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
|
tensor_output = np.ctypeslib.as_array(
|
|
addr, shape=detector_result.get_shape().lens()
|
|
)
|
|
|
|
return yolov8_postprocess(model_input_shape, tensor_output)
|