blakeblackshear.frigate/frigate/object_detection.py
Nicolas Mowen baf671b764
Cleanup and organize utils (#7033)
* Force birdseye cameras into standard aspect ratios

* Organize utils

* Update tests

* Formatting

* Isort

* Fix tests

* Cleanup

* isort
2023-07-06 09:28:50 -05:00

231 lines
7.0 KiB
Python

import datetime
import logging
import multiprocessing as mp
import os
import queue
import signal
import threading
from abc import ABC, abstractmethod
import faster_fifo as ff
import numpy as np
from setproctitle import setproctitle
from frigate.detectors import create_detector
from frigate.detectors.detector_config import InputTensorEnum
from frigate.util.builtin import EventsPerSecond, load_labels
from frigate.util.image import SharedMemoryFrameManager
from frigate.util.services import listen
logger = logging.getLogger(__name__)
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold=0.4):
pass
def tensor_transform(desired_shape):
# Currently this function only supports BHWC permutations
if desired_shape == InputTensorEnum.nhwc:
return None
elif desired_shape == InputTensorEnum.nchw:
return (0, 3, 1, 2)
class LocalObjectDetector(ObjectDetector):
def __init__(
self,
detector_config=None,
labels=None,
):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
if detector_config:
self.input_transform = tensor_transform(detector_config.model.input_tensor)
else:
self.input_transform = None
self.detect_api = create_detector(detector_config)
def detect(self, tensor_input, threshold=0.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if d[1] < threshold:
break
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
self.fps.update()
return detections
def detect_raw(self, tensor_input):
if self.input_transform:
tensor_input = np.transpose(tensor_input, self.input_transform)
return self.detect_api.detect_raw(tensor_input=tensor_input)
def run_detector(
name: str,
detection_queue: ff.Queue,
out_events: dict[str, mp.Event],
avg_speed,
start,
detector_config,
):
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
setproctitle(f"frigate.detector.{name}")
listen()
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
logger.info("Signal to exit detection process...")
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(detector_config=detector_config)
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {"shm": out_shm, "np": out_np}
while not stop_event.is_set():
try:
connection_id = detection_queue.get(timeout=1)
except queue.Empty:
continue
input_frame = frame_manager.get(
connection_id,
(1, detector_config.model.height, detector_config.model.width, 3),
)
if input_frame is None:
continue
# detect and send the output
start.value = datetime.datetime.now().timestamp()
detections = object_detector.detect_raw(input_frame)
duration = datetime.datetime.now().timestamp() - start.value
outputs[connection_id]["np"][:] = detections[:]
out_events[connection_id].set()
start.value = 0.0
avg_speed.value = (avg_speed.value * 9 + duration) / 10
logger.info("Exited detection process...")
class ObjectDetectProcess:
def __init__(
self,
name,
detection_queue,
out_events,
detector_config,
):
self.name = name
self.out_events = out_events
self.detection_queue = detection_queue
self.avg_inference_speed = mp.Value("d", 0.01)
self.detection_start = mp.Value("d", 0.0)
self.detect_process = None
self.detector_config = detector_config
self.start_or_restart()
def stop(self):
# if the process has already exited on its own, just return
if self.detect_process and self.detect_process.exitcode:
return
self.detect_process.terminate()
logging.info("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
logging.info("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
logging.info("Detection process has exited...")
def start_or_restart(self):
self.detection_start.value = 0.0
if (self.detect_process is not None) and self.detect_process.is_alive():
self.stop()
self.detect_process = mp.Process(
target=run_detector,
name=f"detector:{self.name}",
args=(
self.name,
self.detection_queue,
self.out_events,
self.avg_inference_speed,
self.detection_start,
self.detector_config,
),
)
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector:
def __init__(self, name, labels, detection_queue, event, model_config, stop_event):
self.labels = labels
self.name = name
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.event = event
self.stop_event = stop_event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray(
(1, model_config.height, model_config.width, 3),
dtype=np.uint8,
buffer=self.shm.buf,
)
self.out_shm = mp.shared_memory.SharedMemory(
name=f"out-{self.name}", create=False
)
self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=0.4):
detections = []
if self.stop_event.is_set():
return detections
# copy input to shared memory
self.np_shm[:] = tensor_input[:]
self.event.clear()
self.detection_queue.put(self.name)
result = self.event.wait(timeout=5.0)
# if it timed out
if result is None:
return detections
for d in self.out_np_shm:
if d[1] < threshold:
break
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
self.fps.update()
return detections
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()