mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
0592c8b0e2
* Initial commit that adds YOLOv5 and YOLOv8 support for OpenVINO detector * Fixed double inference bug with YOLOv5 and YOLOv8 * Modified documentation to mention YOLOv5 and YOLOv8 * Changes to pass lint checks * Change minimum threshold to improve model performance * Fix link * Clean up YOLO post-processing --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
175 lines
6.9 KiB
Python
175 lines
6.9 KiB
Python
import logging
|
|
import numpy as np
|
|
import openvino.runtime as ov
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
|
from typing import Literal
|
|
from pydantic import Extra, Field
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "openvino"
|
|
|
|
|
|
class OvDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
device: str = Field(default=None, title="Device Type")
|
|
|
|
|
|
class OvDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: OvDetectorConfig):
|
|
self.ov_core = ov.Core()
|
|
self.ov_model = self.ov_core.read_model(detector_config.model.path)
|
|
self.ov_model_type = detector_config.model.model_type
|
|
|
|
self.h = detector_config.model.height
|
|
self.w = detector_config.model.width
|
|
|
|
self.interpreter = self.ov_core.compile_model(
|
|
model=self.ov_model, device_name=detector_config.device
|
|
)
|
|
|
|
logger.info(f"Model Input Shape: {self.interpreter.input(0).shape}")
|
|
self.output_indexes = 0
|
|
|
|
while True:
|
|
try:
|
|
tensor_shape = self.interpreter.output(self.output_indexes).shape
|
|
logger.info(f"Model Output-{self.output_indexes} Shape: {tensor_shape}")
|
|
self.output_indexes += 1
|
|
except:
|
|
logger.info(f"Model has {self.output_indexes} Output Tensors")
|
|
break
|
|
if self.ov_model_type == ModelTypeEnum.yolox:
|
|
self.num_classes = tensor_shape[2] - 5
|
|
logger.info(f"YOLOX model has {self.num_classes} classes")
|
|
self.set_strides_grids()
|
|
|
|
def set_strides_grids(self):
|
|
grids = []
|
|
expanded_strides = []
|
|
|
|
strides = [8, 16, 32]
|
|
|
|
hsizes = [self.h // stride for stride in strides]
|
|
wsizes = [self.w // stride for stride in strides]
|
|
|
|
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
|
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
|
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
|
grids.append(grid)
|
|
shape = grid.shape[:2]
|
|
expanded_strides.append(np.full((*shape, 1), stride))
|
|
self.grids = np.concatenate(grids, 1)
|
|
self.expanded_strides = np.concatenate(expanded_strides, 1)
|
|
|
|
## Takes in class ID, confidence score, and array of [x, y, w, h] that describes detection position,
|
|
## returns an array that's easily passable back to Frigate.
|
|
def process_yolo(self, class_id, conf, pos):
|
|
return [
|
|
class_id, # class ID
|
|
conf, # confidence score
|
|
(pos[1] - (pos[3] / 2)) / self.h, # y_min
|
|
(pos[0] - (pos[2] / 2)) / self.w, # x_min
|
|
(pos[1] + (pos[3] / 2)) / self.h, # y_max
|
|
(pos[0] + (pos[2] / 2)) / self.w, # x_max
|
|
]
|
|
|
|
def detect_raw(self, tensor_input):
|
|
infer_request = self.interpreter.create_infer_request()
|
|
infer_request.infer([tensor_input])
|
|
|
|
if self.ov_model_type == ModelTypeEnum.ssd:
|
|
results = infer_request.get_output_tensor()
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
i = 0
|
|
for object_detected in results.data[0, 0, :]:
|
|
if object_detected[0] != -1:
|
|
logger.debug(object_detected)
|
|
if object_detected[2] < 0.1 or i == 20:
|
|
break
|
|
detections[i] = [
|
|
object_detected[1], # Label ID
|
|
float(object_detected[2]), # Confidence
|
|
object_detected[4], # y_min
|
|
object_detected[3], # x_min
|
|
object_detected[6], # y_max
|
|
object_detected[5], # x_max
|
|
]
|
|
i += 1
|
|
return detections
|
|
elif self.ov_model_type == ModelTypeEnum.yolox:
|
|
out_tensor = infer_request.get_output_tensor()
|
|
# [x, y, h, w, box_score, class_no_1, ..., class_no_80],
|
|
results = out_tensor.data
|
|
results[..., :2] = (results[..., :2] + self.grids) * self.expanded_strides
|
|
results[..., 2:4] = np.exp(results[..., 2:4]) * self.expanded_strides
|
|
image_pred = results[0, ...]
|
|
|
|
class_conf = np.max(
|
|
image_pred[:, 5 : 5 + self.num_classes], axis=1, keepdims=True
|
|
)
|
|
class_pred = np.argmax(image_pred[:, 5 : 5 + self.num_classes], axis=1)
|
|
class_pred = np.expand_dims(class_pred, axis=1)
|
|
|
|
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= 0.3).squeeze()
|
|
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
|
|
dets = np.concatenate((image_pred[:, :5], class_conf, class_pred), axis=1)
|
|
dets = dets[conf_mask]
|
|
|
|
ordered = dets[dets[:, 5].argsort()[::-1]][:20]
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
for i, object_detected in enumerate(ordered):
|
|
detections[i] = self.process_yolo(
|
|
object_detected[6], object_detected[5], object_detected[:4]
|
|
)
|
|
return detections
|
|
elif self.ov_model_type == ModelTypeEnum.yolov8:
|
|
out_tensor = infer_request.get_output_tensor()
|
|
results = out_tensor.data[0]
|
|
output_data = np.transpose(results)
|
|
scores = np.max(output_data[:, 4:], axis=1)
|
|
if len(scores) == 0:
|
|
return np.zeros((20, 6), np.float32)
|
|
scores = np.expand_dims(scores, axis=1)
|
|
# add scores to the last column
|
|
dets = np.concatenate((output_data, scores), axis=1)
|
|
# filter out lines with scores below threshold
|
|
dets = dets[dets[:, -1] > 0.5, :]
|
|
# limit to top 20 scores, descending order
|
|
ordered = dets[dets[:, -1].argsort()[::-1]][:20]
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
for i, object_detected in enumerate(ordered):
|
|
detections[i] = self.process_yolo(
|
|
np.argmax(object_detected[4:-1]),
|
|
object_detected[-1],
|
|
object_detected[:4],
|
|
)
|
|
return detections
|
|
elif self.ov_model_type == ModelTypeEnum.yolov5:
|
|
out_tensor = infer_request.get_output_tensor()
|
|
output_data = out_tensor.data[0]
|
|
# filter out lines with scores below threshold
|
|
conf_mask = (output_data[:, 4] >= 0.5).squeeze()
|
|
output_data = output_data[conf_mask]
|
|
# limit to top 20 scores, descending order
|
|
ordered = output_data[output_data[:, 4].argsort()[::-1]][:20]
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
for i, object_detected in enumerate(ordered):
|
|
detections[i] = self.process_yolo(
|
|
np.argmax(object_detected[5:]),
|
|
object_detected[4],
|
|
object_detected[:4],
|
|
)
|
|
return detections
|