mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-07 00:06:57 +01:00
ab50d0b006
* Add isort and ruff linter Both linters are pretty common among modern python code bases. The isort tool provides stable sorting and grouping, as well as pruning of unused imports. Ruff is a modern linter, that is very fast due to being written in rust. It can detect many common issues in a python codebase. Removes the pylint dev requirement, since ruff replaces it. * treewide: fix issues detected by ruff * treewide: fix bare except clauses * .devcontainer: Set up isort * treewide: optimize imports * treewide: apply black * treewide: make regex patterns raw strings This is necessary for escape sequences to be properly recognized.
138 lines
5.0 KiB
Python
138 lines
5.0 KiB
Python
import unittest
|
|
from unittest.mock import Mock, patch
|
|
|
|
import numpy as np
|
|
from pydantic import parse_obj_as
|
|
|
|
import frigate.detectors as detectors
|
|
import frigate.object_detection
|
|
from frigate.config import DetectorConfig, InputTensorEnum, ModelConfig
|
|
from frigate.detectors import DetectorTypeEnum
|
|
|
|
|
|
class TestLocalObjectDetector(unittest.TestCase):
|
|
def test_localdetectorprocess_should_only_create_specified_detector_type(self):
|
|
for det_type in detectors.api_types:
|
|
with self.subTest(det_type=det_type):
|
|
with patch.dict(
|
|
"frigate.detectors.api_types",
|
|
{det_type: Mock() for det_type in DetectorTypeEnum},
|
|
):
|
|
test_cfg = parse_obj_as(
|
|
DetectorConfig, ({"type": det_type, "model": {}})
|
|
)
|
|
test_cfg.model.path = "/test/modelpath"
|
|
test_obj = frigate.object_detection.LocalObjectDetector(
|
|
detector_config=test_cfg
|
|
)
|
|
|
|
assert test_obj is not None
|
|
for api_key, mock_detector in detectors.api_types.items():
|
|
if test_cfg.type == api_key:
|
|
mock_detector.assert_called_once_with(test_cfg)
|
|
else:
|
|
mock_detector.assert_not_called()
|
|
|
|
@patch.dict(
|
|
"frigate.detectors.api_types",
|
|
{det_type: Mock() for det_type in DetectorTypeEnum},
|
|
)
|
|
def test_detect_raw_given_tensor_input_should_return_api_detect_raw_result(self):
|
|
mock_cputfl = detectors.api_types[DetectorTypeEnum.cpu]
|
|
|
|
TEST_DATA = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
TEST_DETECT_RESULT = np.ndarray([1, 2, 4, 8, 16, 32])
|
|
test_obj_detect = frigate.object_detection.LocalObjectDetector(
|
|
detector_config=parse_obj_as(DetectorConfig, {"type": "cpu", "model": {}})
|
|
)
|
|
|
|
mock_det_api = mock_cputfl.return_value
|
|
mock_det_api.detect_raw.return_value = TEST_DETECT_RESULT
|
|
|
|
test_result = test_obj_detect.detect_raw(TEST_DATA)
|
|
|
|
mock_det_api.detect_raw.assert_called_once_with(tensor_input=TEST_DATA)
|
|
assert test_result is mock_det_api.detect_raw.return_value
|
|
|
|
@patch.dict(
|
|
"frigate.detectors.api_types",
|
|
{det_type: Mock() for det_type in DetectorTypeEnum},
|
|
)
|
|
def test_detect_raw_given_tensor_input_should_call_api_detect_raw_with_transposed_tensor(
|
|
self,
|
|
):
|
|
mock_cputfl = detectors.api_types[DetectorTypeEnum.cpu]
|
|
|
|
TEST_DATA = np.zeros((1, 32, 32, 3), np.uint8)
|
|
TEST_DETECT_RESULT = np.ndarray([1, 2, 4, 8, 16, 32])
|
|
|
|
test_cfg = parse_obj_as(DetectorConfig, {"type": "cpu", "model": {}})
|
|
test_cfg.model.input_tensor = InputTensorEnum.nchw
|
|
|
|
test_obj_detect = frigate.object_detection.LocalObjectDetector(
|
|
detector_config=test_cfg
|
|
)
|
|
|
|
mock_det_api = mock_cputfl.return_value
|
|
mock_det_api.detect_raw.return_value = TEST_DETECT_RESULT
|
|
|
|
test_result = test_obj_detect.detect_raw(TEST_DATA)
|
|
|
|
mock_det_api.detect_raw.assert_called_once()
|
|
assert (
|
|
mock_det_api.detect_raw.call_args.kwargs["tensor_input"].shape
|
|
== np.zeros((1, 3, 32, 32)).shape
|
|
)
|
|
|
|
assert test_result is mock_det_api.detect_raw.return_value
|
|
|
|
@patch.dict(
|
|
"frigate.detectors.api_types",
|
|
{det_type: Mock() for det_type in DetectorTypeEnum},
|
|
)
|
|
@patch("frigate.object_detection.load_labels")
|
|
def test_detect_given_tensor_input_should_return_lfiltered_detections(
|
|
self, mock_load_labels
|
|
):
|
|
mock_cputfl = detectors.api_types[DetectorTypeEnum.cpu]
|
|
|
|
TEST_DATA = np.zeros((1, 32, 32, 3), np.uint8)
|
|
TEST_DETECT_RAW = [
|
|
[2, 0.9, 5, 4, 3, 2],
|
|
[1, 0.5, 8, 7, 6, 5],
|
|
[0, 0.4, 2, 4, 8, 16],
|
|
]
|
|
TEST_DETECT_RESULT = [
|
|
("label-3", 0.9, (5, 4, 3, 2)),
|
|
("label-2", 0.5, (8, 7, 6, 5)),
|
|
]
|
|
TEST_LABEL_FILE = "/test_labels.txt"
|
|
mock_load_labels.return_value = [
|
|
"label-1",
|
|
"label-2",
|
|
"label-3",
|
|
"label-4",
|
|
"label-5",
|
|
]
|
|
|
|
test_cfg = parse_obj_as(DetectorConfig, {"type": "cpu", "model": {}})
|
|
test_cfg.model = ModelConfig()
|
|
test_obj_detect = frigate.object_detection.LocalObjectDetector(
|
|
detector_config=test_cfg,
|
|
labels=TEST_LABEL_FILE,
|
|
)
|
|
|
|
mock_load_labels.assert_called_once_with(TEST_LABEL_FILE)
|
|
|
|
mock_det_api = mock_cputfl.return_value
|
|
mock_det_api.detect_raw.return_value = TEST_DETECT_RAW
|
|
|
|
test_result = test_obj_detect.detect(tensor_input=TEST_DATA, threshold=0.5)
|
|
|
|
mock_det_api.detect_raw.assert_called_once()
|
|
assert (
|
|
mock_det_api.detect_raw.call_args.kwargs["tensor_input"].shape
|
|
== np.zeros((1, 32, 32, 3)).shape
|
|
)
|
|
assert test_result == TEST_DETECT_RESULT
|