blakeblackshear.frigate/frigate/embeddings/util.py
Jason Hunter 9e825811f2 Semantic Search API (#12105)
* initial event search api implementation

* fix lint

* fix tests

* move chromadb imports and pysqlite hotswap to fix tests

* remove unused import

* switch default limit to 50

* fix events accidently pulling inside chroma results loop
2024-08-29 20:19:50 -06:00

48 lines
1.1 KiB
Python

"""Z-score normalization for search distance."""
import math
class ZScoreNormalization:
"""Running Z-score normalization for search distance."""
def __init__(self):
self.n = 0
self.mean = 0
self.m2 = 0
@property
def variance(self):
return self.m2 / (self.n - 1) if self.n > 1 else 0.0
@property
def stddev(self):
return math.sqrt(self.variance)
def normalize(self, distances: list[float]):
self._update(distances)
if self.stddev == 0:
return distances
return [(x - self.mean) / self.stddev for x in distances]
def _update(self, distances: list[float]):
for x in distances:
self.n += 1
delta = x - self.mean
self.mean += delta / self.n
delta2 = x - self.mean
self.m2 += delta * delta2
def to_dict(self):
return {
"n": self.n,
"mean": self.mean,
"m2": self.m2,
}
def from_dict(self, data: dict):
self.n = data["n"]
self.mean = data["mean"]
self.m2 = data["m2"]
return self