mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-23 00:18:31 +01:00
* Move onnx runner * Build out base embedding * Convert text embedding to separate class * Move image embedding to separate * Move LPR to separate class * Remove mono embedding * Simplify model downloading * Reorganize jina v1 embeddings * Cleanup * Cleanup for review
80 lines
2.4 KiB
Python
80 lines
2.4 KiB
Python
"""Convenience runner for onnx models."""
|
|
|
|
import logging
|
|
from typing import Any
|
|
|
|
import onnxruntime as ort
|
|
|
|
from frigate.util.model import get_ort_providers
|
|
|
|
try:
|
|
import openvino as ov
|
|
except ImportError:
|
|
# openvino is not included
|
|
pass
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ONNXModelRunner:
|
|
"""Run onnx models optimally based on available hardware."""
|
|
|
|
def __init__(self, model_path: str, device: str, requires_fp16: bool = False):
|
|
self.model_path = model_path
|
|
self.ort: ort.InferenceSession = None
|
|
self.ov: ov.Core = None
|
|
providers, options = get_ort_providers(device == "CPU", device, requires_fp16)
|
|
self.interpreter = None
|
|
|
|
if "OpenVINOExecutionProvider" in providers:
|
|
try:
|
|
# use OpenVINO directly
|
|
self.type = "ov"
|
|
self.ov = ov.Core()
|
|
self.ov.set_property(
|
|
{ov.properties.cache_dir: "/config/model_cache/openvino"}
|
|
)
|
|
self.interpreter = self.ov.compile_model(
|
|
model=model_path, device_name=device
|
|
)
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"OpenVINO failed to build model, using CPU instead: {e}"
|
|
)
|
|
self.interpreter = None
|
|
|
|
# Use ONNXRuntime
|
|
if self.interpreter is None:
|
|
self.type = "ort"
|
|
self.ort = ort.InferenceSession(
|
|
model_path,
|
|
providers=providers,
|
|
provider_options=options,
|
|
)
|
|
|
|
def get_input_names(self) -> list[str]:
|
|
if self.type == "ov":
|
|
input_names = []
|
|
|
|
for input in self.interpreter.inputs:
|
|
input_names.extend(input.names)
|
|
|
|
return input_names
|
|
elif self.type == "ort":
|
|
return [input.name for input in self.ort.get_inputs()]
|
|
|
|
def run(self, input: dict[str, Any]) -> Any:
|
|
if self.type == "ov":
|
|
infer_request = self.interpreter.create_infer_request()
|
|
input_tensor = list(input.values())
|
|
|
|
if len(input_tensor) == 1:
|
|
input_tensor = ov.Tensor(array=input_tensor[0])
|
|
else:
|
|
input_tensor = ov.Tensor(array=input_tensor)
|
|
|
|
infer_request.infer(input_tensor)
|
|
return [infer_request.get_output_tensor().data]
|
|
elif self.type == "ort":
|
|
return self.ort.run(None, input)
|