mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
77dc091c2a
* Update version * Face recognition backend (#14495) * Add basic config and face recognition table * Reconfigure updates processing to handle face * Crop frame to face box * Implement face embedding calculation * Get matching face embeddings * Add support face recognition based on existing faces * Use arcface face embeddings instead of generic embeddings model * Add apis for managing faces * Implement face uploading API * Build out more APIs * Add min area config * Handle larger images * Add more debug logs * fix calculation * Reduce timeout * Small tweaks * Use webp images * Use facenet model * Improve face recognition (#14537) * Increase requirements for face to be set * Manage faces properly * Add basic docs * Simplify * Separate out face recognition frome semantic search * Update docs * Formatting * Fix access (#14540) * Face detection (#14544) * Add support for face detection * Add support for detecting faces during registration * Set body size to be larger * Undo * Update version * Face recognition backend (#14495) * Add basic config and face recognition table * Reconfigure updates processing to handle face * Crop frame to face box * Implement face embedding calculation * Get matching face embeddings * Add support face recognition based on existing faces * Use arcface face embeddings instead of generic embeddings model * Add apis for managing faces * Implement face uploading API * Build out more APIs * Add min area config * Handle larger images * Add more debug logs * fix calculation * Reduce timeout * Small tweaks * Use webp images * Use facenet model * Improve face recognition (#14537) * Increase requirements for face to be set * Manage faces properly * Add basic docs * Simplify * Separate out face recognition frome semantic search * Update docs * Formatting * Fix access (#14540) * Face detection (#14544) * Add support for face detection * Add support for detecting faces during registration * Set body size to be larger * Undo * initial foundation for alpr with paddleocr * initial foundation for alpr with paddleocr * initial foundation for alpr with paddleocr * config * config * lpr maintainer * clean up * clean up * fix processing * don't process for stationary cars * fix order * fixes * check for known plates * improved length and character by character confidence * model fixes and small tweaks * docs * placeholder for non frigate+ model lp detection --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
727 lines
27 KiB
Python
727 lines
27 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
from pydantic import (
|
|
BaseModel,
|
|
ConfigDict,
|
|
Field,
|
|
TypeAdapter,
|
|
ValidationInfo,
|
|
field_serializer,
|
|
field_validator,
|
|
model_validator,
|
|
)
|
|
from ruamel.yaml import YAML
|
|
from typing_extensions import Self
|
|
|
|
from frigate.const import REGEX_JSON
|
|
from frigate.detectors import DetectorConfig, ModelConfig
|
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
|
from frigate.plus import PlusApi
|
|
from frigate.util.builtin import (
|
|
deep_merge,
|
|
get_ffmpeg_arg_list,
|
|
)
|
|
from frigate.util.config import (
|
|
StreamInfoRetriever,
|
|
get_relative_coordinates,
|
|
migrate_frigate_config,
|
|
)
|
|
from frigate.util.image import create_mask
|
|
from frigate.util.services import auto_detect_hwaccel
|
|
|
|
from .auth import AuthConfig
|
|
from .base import FrigateBaseModel
|
|
from .camera import CameraConfig, CameraLiveConfig
|
|
from .camera.audio import AudioConfig
|
|
from .camera.birdseye import BirdseyeConfig
|
|
from .camera.detect import DetectConfig
|
|
from .camera.ffmpeg import FfmpegConfig
|
|
from .camera.genai import GenAIConfig
|
|
from .camera.motion import MotionConfig
|
|
from .camera.objects import FilterConfig, ObjectConfig
|
|
from .camera.record import RecordConfig, RetainModeEnum
|
|
from .camera.review import ReviewConfig
|
|
from .camera.snapshots import SnapshotsConfig
|
|
from .camera.timestamp import TimestampStyleConfig
|
|
from .camera_group import CameraGroupConfig
|
|
from .database import DatabaseConfig
|
|
from .env import EnvVars
|
|
from .logger import LoggerConfig
|
|
from .mqtt import MqttConfig
|
|
from .notification import NotificationConfig
|
|
from .proxy import ProxyConfig
|
|
from .semantic_search import (
|
|
FaceRecognitionConfig,
|
|
LicensePlateRecognitionConfig,
|
|
SemanticSearchConfig,
|
|
)
|
|
from .telemetry import TelemetryConfig
|
|
from .tls import TlsConfig
|
|
from .ui import UIConfig
|
|
|
|
__all__ = ["FrigateConfig"]
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
yaml = YAML()
|
|
|
|
DEFAULT_CONFIG_FILE = "/config/config.yml"
|
|
DEFAULT_CONFIG = """
|
|
mqtt:
|
|
enabled: False
|
|
|
|
cameras:
|
|
name_of_your_camera: # <------ Name the camera
|
|
enabled: True
|
|
ffmpeg:
|
|
inputs:
|
|
- path: rtsp://10.0.10.10:554/rtsp # <----- The stream you want to use for detection
|
|
roles:
|
|
- detect
|
|
detect:
|
|
enabled: False # <---- disable detection until you have a working camera feed
|
|
width: 1280
|
|
height: 720
|
|
"""
|
|
|
|
DEFAULT_DETECTORS = {"cpu": {"type": "cpu"}}
|
|
DEFAULT_DETECT_DIMENSIONS = {"width": 1280, "height": 720}
|
|
|
|
# stream info handler
|
|
stream_info_retriever = StreamInfoRetriever()
|
|
|
|
|
|
class RuntimeMotionConfig(MotionConfig):
|
|
raw_mask: Union[str, List[str]] = ""
|
|
mask: np.ndarray = None
|
|
|
|
def __init__(self, **config):
|
|
frame_shape = config.get("frame_shape", (1, 1))
|
|
|
|
mask = get_relative_coordinates(config.get("mask", ""), frame_shape)
|
|
config["raw_mask"] = mask
|
|
|
|
if mask:
|
|
config["mask"] = create_mask(frame_shape, mask)
|
|
else:
|
|
empty_mask = np.zeros(frame_shape, np.uint8)
|
|
empty_mask[:] = 255
|
|
config["mask"] = empty_mask
|
|
|
|
super().__init__(**config)
|
|
|
|
def dict(self, **kwargs):
|
|
ret = super().model_dump(**kwargs)
|
|
if "mask" in ret:
|
|
ret["mask"] = ret["raw_mask"]
|
|
ret.pop("raw_mask")
|
|
return ret
|
|
|
|
@field_serializer("mask", when_used="json")
|
|
def serialize_mask(self, value: Any, info):
|
|
return self.raw_mask
|
|
|
|
@field_serializer("raw_mask", when_used="json")
|
|
def serialize_raw_mask(self, value: Any, info):
|
|
return None
|
|
|
|
model_config = ConfigDict(arbitrary_types_allowed=True, extra="ignore")
|
|
|
|
|
|
class RuntimeFilterConfig(FilterConfig):
|
|
mask: Optional[np.ndarray] = None
|
|
raw_mask: Optional[Union[str, List[str]]] = None
|
|
|
|
def __init__(self, **config):
|
|
frame_shape = config.get("frame_shape", (1, 1))
|
|
mask = get_relative_coordinates(config.get("mask"), frame_shape)
|
|
|
|
config["raw_mask"] = mask
|
|
|
|
if mask is not None:
|
|
config["mask"] = create_mask(frame_shape, mask)
|
|
|
|
super().__init__(**config)
|
|
|
|
def dict(self, **kwargs):
|
|
ret = super().model_dump(**kwargs)
|
|
if "mask" in ret:
|
|
ret["mask"] = ret["raw_mask"]
|
|
ret.pop("raw_mask")
|
|
return ret
|
|
|
|
model_config = ConfigDict(arbitrary_types_allowed=True, extra="ignore")
|
|
|
|
|
|
class RestreamConfig(BaseModel):
|
|
model_config = ConfigDict(extra="allow")
|
|
|
|
|
|
def verify_semantic_search_dependent_configs(config: FrigateConfig) -> None:
|
|
"""Verify that semantic search is enabled if required features are enabled."""
|
|
if not config.semantic_search.enabled:
|
|
if config.genai.enabled:
|
|
raise ValueError("Genai requires semantic search to be enabled.")
|
|
|
|
if config.face_recognition.enabled:
|
|
raise ValueError("Face recognition requires semantic to be enabled.")
|
|
|
|
|
|
def verify_config_roles(camera_config: CameraConfig) -> None:
|
|
"""Verify that roles are setup in the config correctly."""
|
|
assigned_roles = list(
|
|
set([r for i in camera_config.ffmpeg.inputs for r in i.roles])
|
|
)
|
|
|
|
if camera_config.record.enabled and "record" not in assigned_roles:
|
|
raise ValueError(
|
|
f"Camera {camera_config.name} has record enabled, but record is not assigned to an input."
|
|
)
|
|
|
|
if camera_config.audio.enabled and "audio" not in assigned_roles:
|
|
raise ValueError(
|
|
f"Camera {camera_config.name} has audio events enabled, but audio is not assigned to an input."
|
|
)
|
|
|
|
|
|
def verify_valid_live_stream_name(
|
|
frigate_config: FrigateConfig, camera_config: CameraConfig
|
|
) -> ValueError | None:
|
|
"""Verify that a restream exists to use for live view."""
|
|
if (
|
|
camera_config.live.stream_name
|
|
not in frigate_config.go2rtc.model_dump().get("streams", {}).keys()
|
|
):
|
|
return ValueError(
|
|
f"No restream with name {camera_config.live.stream_name} exists for camera {camera_config.name}."
|
|
)
|
|
|
|
|
|
def verify_recording_retention(camera_config: CameraConfig) -> None:
|
|
"""Verify that recording retention modes are ranked correctly."""
|
|
rank_map = {
|
|
RetainModeEnum.all: 0,
|
|
RetainModeEnum.motion: 1,
|
|
RetainModeEnum.active_objects: 2,
|
|
}
|
|
|
|
if (
|
|
camera_config.record.retain.days != 0
|
|
and rank_map[camera_config.record.retain.mode]
|
|
> rank_map[camera_config.record.alerts.retain.mode]
|
|
):
|
|
logger.warning(
|
|
f"{camera_config.name}: Recording retention is configured for {camera_config.record.retain.mode} and alert retention is configured for {camera_config.record.alerts.retain.mode}. The more restrictive retention policy will be applied."
|
|
)
|
|
|
|
if (
|
|
camera_config.record.retain.days != 0
|
|
and rank_map[camera_config.record.retain.mode]
|
|
> rank_map[camera_config.record.detections.retain.mode]
|
|
):
|
|
logger.warning(
|
|
f"{camera_config.name}: Recording retention is configured for {camera_config.record.retain.mode} and detection retention is configured for {camera_config.record.detections.retain.mode}. The more restrictive retention policy will be applied."
|
|
)
|
|
|
|
|
|
def verify_recording_segments_setup_with_reasonable_time(
|
|
camera_config: CameraConfig,
|
|
) -> None:
|
|
"""Verify that recording segments are setup and segment time is not greater than 60."""
|
|
record_args: list[str] = get_ffmpeg_arg_list(
|
|
camera_config.ffmpeg.output_args.record
|
|
)
|
|
|
|
if record_args[0].startswith("preset"):
|
|
return
|
|
|
|
try:
|
|
seg_arg_index = record_args.index("-segment_time")
|
|
except ValueError:
|
|
raise ValueError(f"Camera {camera_config.name} has no segment_time in \
|
|
recording output args, segment args are required for record.")
|
|
|
|
if int(record_args[seg_arg_index + 1]) > 60:
|
|
raise ValueError(f"Camera {camera_config.name} has invalid segment_time output arg, \
|
|
segment_time must be 60 or less.")
|
|
|
|
|
|
def verify_zone_objects_are_tracked(camera_config: CameraConfig) -> None:
|
|
"""Verify that user has not entered zone objects that are not in the tracking config."""
|
|
for zone_name, zone in camera_config.zones.items():
|
|
for obj in zone.objects:
|
|
if obj not in camera_config.objects.track:
|
|
raise ValueError(
|
|
f"Zone {zone_name} is configured to track {obj} but that object type is not added to objects -> track."
|
|
)
|
|
|
|
|
|
def verify_required_zones_exist(camera_config: CameraConfig) -> None:
|
|
for det_zone in camera_config.review.detections.required_zones:
|
|
if det_zone not in camera_config.zones.keys():
|
|
raise ValueError(
|
|
f"Camera {camera_config.name} has a required zone for detections {det_zone} that is not defined."
|
|
)
|
|
|
|
for det_zone in camera_config.review.alerts.required_zones:
|
|
if det_zone not in camera_config.zones.keys():
|
|
raise ValueError(
|
|
f"Camera {camera_config.name} has a required zone for alerts {det_zone} that is not defined."
|
|
)
|
|
|
|
|
|
def verify_autotrack_zones(camera_config: CameraConfig) -> ValueError | None:
|
|
"""Verify that required_zones are specified when autotracking is enabled."""
|
|
if (
|
|
camera_config.onvif.autotracking.enabled
|
|
and not camera_config.onvif.autotracking.required_zones
|
|
):
|
|
raise ValueError(
|
|
f"Camera {camera_config.name} has autotracking enabled, required_zones must be set to at least one of the camera's zones."
|
|
)
|
|
|
|
|
|
def verify_motion_and_detect(camera_config: CameraConfig) -> ValueError | None:
|
|
"""Verify that required_zones are specified when autotracking is enabled."""
|
|
if camera_config.detect.enabled and not camera_config.motion.enabled:
|
|
raise ValueError(
|
|
f"Camera {camera_config.name} has motion detection disabled and object detection enabled but object detection requires motion detection."
|
|
)
|
|
|
|
|
|
class FrigateConfig(FrigateBaseModel):
|
|
version: Optional[str] = Field(default=None, title="Current config version.")
|
|
|
|
# Fields that install global state should be defined first, so that their validators run first.
|
|
environment_vars: EnvVars = Field(
|
|
default_factory=dict, title="Frigate environment variables."
|
|
)
|
|
logger: LoggerConfig = Field(
|
|
default_factory=LoggerConfig,
|
|
title="Logging configuration.",
|
|
validate_default=True,
|
|
)
|
|
|
|
# Global config
|
|
auth: AuthConfig = Field(default_factory=AuthConfig, title="Auth configuration.")
|
|
database: DatabaseConfig = Field(
|
|
default_factory=DatabaseConfig, title="Database configuration."
|
|
)
|
|
go2rtc: RestreamConfig = Field(
|
|
default_factory=RestreamConfig, title="Global restream configuration."
|
|
)
|
|
mqtt: MqttConfig = Field(title="MQTT configuration.")
|
|
notifications: NotificationConfig = Field(
|
|
default_factory=NotificationConfig, title="Notification configuration."
|
|
)
|
|
proxy: ProxyConfig = Field(
|
|
default_factory=ProxyConfig, title="Proxy configuration."
|
|
)
|
|
telemetry: TelemetryConfig = Field(
|
|
default_factory=TelemetryConfig, title="Telemetry configuration."
|
|
)
|
|
tls: TlsConfig = Field(default_factory=TlsConfig, title="TLS configuration.")
|
|
semantic_search: SemanticSearchConfig = Field(
|
|
default_factory=SemanticSearchConfig, title="Semantic search configuration."
|
|
)
|
|
face_recognition: FaceRecognitionConfig = Field(
|
|
default_factory=FaceRecognitionConfig, title="Face recognition config."
|
|
)
|
|
lpr: LicensePlateRecognitionConfig = Field(
|
|
default_factory=LicensePlateRecognitionConfig,
|
|
title="License Plate recognition config.",
|
|
)
|
|
ui: UIConfig = Field(default_factory=UIConfig, title="UI configuration.")
|
|
|
|
# Detector config
|
|
detectors: Dict[str, BaseDetectorConfig] = Field(
|
|
default=DEFAULT_DETECTORS,
|
|
title="Detector hardware configuration.",
|
|
)
|
|
model: ModelConfig = Field(
|
|
default_factory=ModelConfig, title="Detection model configuration."
|
|
)
|
|
|
|
# Camera config
|
|
cameras: Dict[str, CameraConfig] = Field(title="Camera configuration.")
|
|
audio: AudioConfig = Field(
|
|
default_factory=AudioConfig, title="Global Audio events configuration."
|
|
)
|
|
birdseye: BirdseyeConfig = Field(
|
|
default_factory=BirdseyeConfig, title="Birdseye configuration."
|
|
)
|
|
detect: DetectConfig = Field(
|
|
default_factory=DetectConfig, title="Global object tracking configuration."
|
|
)
|
|
ffmpeg: FfmpegConfig = Field(
|
|
default_factory=FfmpegConfig, title="Global FFmpeg configuration."
|
|
)
|
|
genai: GenAIConfig = Field(
|
|
default_factory=GenAIConfig, title="Generative AI configuration."
|
|
)
|
|
live: CameraLiveConfig = Field(
|
|
default_factory=CameraLiveConfig, title="Live playback settings."
|
|
)
|
|
motion: Optional[MotionConfig] = Field(
|
|
default=None, title="Global motion detection configuration."
|
|
)
|
|
objects: ObjectConfig = Field(
|
|
default_factory=ObjectConfig, title="Global object configuration."
|
|
)
|
|
record: RecordConfig = Field(
|
|
default_factory=RecordConfig, title="Global record configuration."
|
|
)
|
|
review: ReviewConfig = Field(
|
|
default_factory=ReviewConfig, title="Review configuration."
|
|
)
|
|
snapshots: SnapshotsConfig = Field(
|
|
default_factory=SnapshotsConfig, title="Global snapshots configuration."
|
|
)
|
|
timestamp_style: TimestampStyleConfig = Field(
|
|
default_factory=TimestampStyleConfig,
|
|
title="Global timestamp style configuration.",
|
|
)
|
|
|
|
camera_groups: Dict[str, CameraGroupConfig] = Field(
|
|
default_factory=dict, title="Camera group configuration"
|
|
)
|
|
|
|
_plus_api: PlusApi
|
|
|
|
@property
|
|
def plus_api(self) -> PlusApi:
|
|
return self._plus_api
|
|
|
|
@model_validator(mode="after")
|
|
def post_validation(self, info: ValidationInfo) -> Self:
|
|
# Load plus api from context, if possible.
|
|
self._plus_api = None
|
|
if isinstance(info.context, dict):
|
|
self._plus_api = info.context.get("plus_api")
|
|
|
|
# Ensure self._plus_api is set, if no explicit value is provided.
|
|
if self._plus_api is None:
|
|
self._plus_api = PlusApi()
|
|
|
|
# set notifications state
|
|
self.notifications.enabled_in_config = self.notifications.enabled
|
|
|
|
# set default min_score for object attributes
|
|
for attribute in self.model.all_attributes:
|
|
if not self.objects.filters.get(attribute):
|
|
self.objects.filters[attribute] = FilterConfig(min_score=0.7)
|
|
elif self.objects.filters[attribute].min_score == 0.5:
|
|
self.objects.filters[attribute].min_score = 0.7
|
|
|
|
# auto detect hwaccel args
|
|
if self.ffmpeg.hwaccel_args == "auto":
|
|
self.ffmpeg.hwaccel_args = auto_detect_hwaccel()
|
|
|
|
# Global config to propagate down to camera level
|
|
global_config = self.model_dump(
|
|
include={
|
|
"audio": ...,
|
|
"birdseye": ...,
|
|
"record": ...,
|
|
"snapshots": ...,
|
|
"live": ...,
|
|
"objects": ...,
|
|
"review": ...,
|
|
"genai": ...,
|
|
"motion": ...,
|
|
"detect": ...,
|
|
"ffmpeg": ...,
|
|
"timestamp_style": ...,
|
|
},
|
|
exclude_unset=True,
|
|
)
|
|
|
|
for name, camera in self.cameras.items():
|
|
merged_config = deep_merge(
|
|
camera.model_dump(exclude_unset=True), global_config
|
|
)
|
|
camera_config: CameraConfig = CameraConfig.model_validate(
|
|
{"name": name, **merged_config}
|
|
)
|
|
|
|
if camera_config.ffmpeg.hwaccel_args == "auto":
|
|
camera_config.ffmpeg.hwaccel_args = self.ffmpeg.hwaccel_args
|
|
|
|
for input in camera_config.ffmpeg.inputs:
|
|
need_record_fourcc = False and "record" in input.roles
|
|
need_detect_dimensions = "detect" in input.roles and (
|
|
camera_config.detect.height is None
|
|
or camera_config.detect.width is None
|
|
)
|
|
|
|
if need_detect_dimensions or need_record_fourcc:
|
|
stream_info = {"width": 0, "height": 0, "fourcc": None}
|
|
try:
|
|
stream_info = stream_info_retriever.get_stream_info(
|
|
self.ffmpeg, input.path
|
|
)
|
|
except Exception:
|
|
logger.warning(
|
|
f"Error detecting stream parameters automatically for {input.path} Applying default values."
|
|
)
|
|
stream_info = {"width": 0, "height": 0, "fourcc": None}
|
|
|
|
if need_detect_dimensions:
|
|
camera_config.detect.width = (
|
|
stream_info["width"]
|
|
if stream_info.get("width")
|
|
else DEFAULT_DETECT_DIMENSIONS["width"]
|
|
)
|
|
camera_config.detect.height = (
|
|
stream_info["height"]
|
|
if stream_info.get("height")
|
|
else DEFAULT_DETECT_DIMENSIONS["height"]
|
|
)
|
|
|
|
if need_record_fourcc:
|
|
# Apple only supports HEVC if it is hvc1 (vs. hev1)
|
|
camera_config.ffmpeg.output_args._force_record_hvc1 = (
|
|
stream_info["fourcc"] == "hevc"
|
|
if stream_info.get("hevc")
|
|
else False
|
|
)
|
|
|
|
# Warn if detect fps > 10
|
|
if camera_config.detect.fps > 10:
|
|
logger.warning(
|
|
f"{camera_config.name} detect fps is set to {camera_config.detect.fps}. This does NOT need to match your camera's frame rate. High values could lead to reduced performance. Recommended value is 5."
|
|
)
|
|
|
|
# Default min_initialized configuration
|
|
min_initialized = int(camera_config.detect.fps / 2)
|
|
if camera_config.detect.min_initialized is None:
|
|
camera_config.detect.min_initialized = min_initialized
|
|
|
|
# Default max_disappeared configuration
|
|
max_disappeared = camera_config.detect.fps * 5
|
|
if camera_config.detect.max_disappeared is None:
|
|
camera_config.detect.max_disappeared = max_disappeared
|
|
|
|
# Default stationary_threshold configuration
|
|
stationary_threshold = camera_config.detect.fps * 10
|
|
if camera_config.detect.stationary.threshold is None:
|
|
camera_config.detect.stationary.threshold = stationary_threshold
|
|
# default to the stationary_threshold if not defined
|
|
if camera_config.detect.stationary.interval is None:
|
|
camera_config.detect.stationary.interval = stationary_threshold
|
|
|
|
# set config pre-value
|
|
camera_config.audio.enabled_in_config = camera_config.audio.enabled
|
|
camera_config.record.enabled_in_config = camera_config.record.enabled
|
|
camera_config.onvif.autotracking.enabled_in_config = (
|
|
camera_config.onvif.autotracking.enabled
|
|
)
|
|
|
|
# Add default filters
|
|
object_keys = camera_config.objects.track
|
|
if camera_config.objects.filters is None:
|
|
camera_config.objects.filters = {}
|
|
object_keys = object_keys - camera_config.objects.filters.keys()
|
|
for key in object_keys:
|
|
camera_config.objects.filters[key] = FilterConfig()
|
|
|
|
# Apply global object masks and convert masks to numpy array
|
|
for object, filter in camera_config.objects.filters.items():
|
|
if camera_config.objects.mask:
|
|
filter_mask = []
|
|
if filter.mask is not None:
|
|
filter_mask = (
|
|
filter.mask
|
|
if isinstance(filter.mask, list)
|
|
else [filter.mask]
|
|
)
|
|
object_mask = (
|
|
get_relative_coordinates(
|
|
(
|
|
camera_config.objects.mask
|
|
if isinstance(camera_config.objects.mask, list)
|
|
else [camera_config.objects.mask]
|
|
),
|
|
camera_config.frame_shape,
|
|
)
|
|
or []
|
|
)
|
|
filter.mask = filter_mask + object_mask
|
|
|
|
# Set runtime filter to create masks
|
|
camera_config.objects.filters[object] = RuntimeFilterConfig(
|
|
frame_shape=camera_config.frame_shape,
|
|
**filter.model_dump(exclude_unset=True),
|
|
)
|
|
|
|
# Convert motion configuration
|
|
if camera_config.motion is None:
|
|
camera_config.motion = RuntimeMotionConfig(
|
|
frame_shape=camera_config.frame_shape
|
|
)
|
|
else:
|
|
camera_config.motion = RuntimeMotionConfig(
|
|
frame_shape=camera_config.frame_shape,
|
|
raw_mask=camera_config.motion.mask,
|
|
**camera_config.motion.model_dump(exclude_unset=True),
|
|
)
|
|
camera_config.motion.enabled_in_config = camera_config.motion.enabled
|
|
|
|
# generate zone contours
|
|
if len(camera_config.zones) > 0:
|
|
for zone in camera_config.zones.values():
|
|
zone.generate_contour(camera_config.frame_shape)
|
|
|
|
# Set live view stream if none is set
|
|
if not camera_config.live.stream_name:
|
|
camera_config.live.stream_name = name
|
|
|
|
# generate the ffmpeg commands
|
|
camera_config.create_ffmpeg_cmds()
|
|
self.cameras[name] = camera_config
|
|
|
|
verify_config_roles(camera_config)
|
|
verify_valid_live_stream_name(self, camera_config)
|
|
verify_recording_retention(camera_config)
|
|
verify_recording_segments_setup_with_reasonable_time(camera_config)
|
|
verify_zone_objects_are_tracked(camera_config)
|
|
verify_required_zones_exist(camera_config)
|
|
verify_autotrack_zones(camera_config)
|
|
verify_motion_and_detect(camera_config)
|
|
|
|
# get list of unique enabled labels for tracking
|
|
enabled_labels = set(self.objects.track)
|
|
|
|
for camera in self.cameras.values():
|
|
enabled_labels.update(camera.objects.track)
|
|
|
|
self.model.create_colormap(sorted(enabled_labels))
|
|
self.model.check_and_load_plus_model(self.plus_api)
|
|
|
|
for key, detector in self.detectors.items():
|
|
adapter = TypeAdapter(DetectorConfig)
|
|
model_dict = (
|
|
detector
|
|
if isinstance(detector, dict)
|
|
else detector.model_dump(warnings="none")
|
|
)
|
|
detector_config: DetectorConfig = adapter.validate_python(model_dict)
|
|
if detector_config.model is None:
|
|
detector_config.model = self.model.model_copy()
|
|
else:
|
|
path = detector_config.model.path
|
|
detector_config.model = self.model.model_copy()
|
|
detector_config.model.path = path
|
|
|
|
if "path" not in model_dict or len(model_dict.keys()) > 1:
|
|
logger.warning(
|
|
"Customizing more than a detector model path is unsupported."
|
|
)
|
|
|
|
merged_model = deep_merge(
|
|
detector_config.model.model_dump(exclude_unset=True, warnings="none"),
|
|
self.model.model_dump(exclude_unset=True, warnings="none"),
|
|
)
|
|
|
|
if "path" not in merged_model:
|
|
if detector_config.type == "cpu":
|
|
merged_model["path"] = "/cpu_model.tflite"
|
|
elif detector_config.type == "edgetpu":
|
|
merged_model["path"] = "/edgetpu_model.tflite"
|
|
|
|
detector_config.model = ModelConfig.model_validate(merged_model)
|
|
detector_config.model.check_and_load_plus_model(
|
|
self.plus_api, detector_config.type
|
|
)
|
|
detector_config.model.compute_model_hash()
|
|
self.detectors[key] = detector_config
|
|
|
|
verify_semantic_search_dependent_configs(self)
|
|
return self
|
|
|
|
@field_validator("cameras")
|
|
@classmethod
|
|
def ensure_zones_and_cameras_have_different_names(cls, v: Dict[str, CameraConfig]):
|
|
zones = [zone for camera in v.values() for zone in camera.zones.keys()]
|
|
for zone in zones:
|
|
if zone in v.keys():
|
|
raise ValueError("Zones cannot share names with cameras")
|
|
return v
|
|
|
|
@classmethod
|
|
def load(cls, **kwargs):
|
|
config_path = os.environ.get("CONFIG_FILE", DEFAULT_CONFIG_FILE)
|
|
|
|
if not os.path.isfile(config_path):
|
|
config_path = config_path.replace("yml", "yaml")
|
|
|
|
# No configuration file found, create one.
|
|
new_config = False
|
|
if not os.path.isfile(config_path):
|
|
logger.info("No config file found, saving default config")
|
|
config_path = DEFAULT_CONFIG_FILE
|
|
new_config = True
|
|
else:
|
|
# Check if the config file needs to be migrated.
|
|
migrate_frigate_config(config_path)
|
|
|
|
# Finally, load the resulting configuration file.
|
|
with open(config_path, "a+" if new_config else "r") as f:
|
|
# Only write the default config if the opened file is non-empty. This can happen as
|
|
# a race condition. It's extremely unlikely, but eh. Might as well check it.
|
|
if new_config and f.tell() == 0:
|
|
f.write(DEFAULT_CONFIG)
|
|
logger.info(
|
|
"Created default config file, see the getting started docs \
|
|
for configuration https://docs.frigate.video/guides/getting_started"
|
|
)
|
|
|
|
f.seek(0)
|
|
return FrigateConfig.parse(f, **kwargs)
|
|
|
|
@classmethod
|
|
def parse(cls, config, *, is_json=None, **context):
|
|
# If config is a file, read its contents.
|
|
if hasattr(config, "read"):
|
|
fname = getattr(config, "name", None)
|
|
config = config.read()
|
|
|
|
# Try to guess the value of is_json from the file extension.
|
|
if is_json is None and fname:
|
|
_, ext = os.path.splitext(fname)
|
|
if ext in (".yaml", ".yml"):
|
|
is_json = False
|
|
elif ext == ".json":
|
|
is_json = True
|
|
|
|
# At this point, try to sniff the config string, to guess if it is json or not.
|
|
if is_json is None:
|
|
is_json = REGEX_JSON.match(config) is not None
|
|
|
|
# Parse the config into a dictionary.
|
|
if is_json:
|
|
config = json.load(config)
|
|
else:
|
|
config = yaml.load(config)
|
|
|
|
# Validate and return the config dict.
|
|
return cls.parse_object(config, **context)
|
|
|
|
@classmethod
|
|
def parse_yaml(cls, config_yaml, **context):
|
|
return cls.parse(config_yaml, is_json=False, **context)
|
|
|
|
@classmethod
|
|
def parse_object(
|
|
cls, obj: Any, *, plus_api: Optional[PlusApi] = None, install: bool = False
|
|
):
|
|
return cls.model_validate(
|
|
obj, context={"plus_api": plus_api, "install": install}
|
|
)
|