blakeblackshear.frigate/frigate/detectors/plugins/cpu_tfl.py
Dennis George 420bcd7aa0
Convert detectors to factory pattern, ability to set different model for each detector (#4635)
* refactor detectors

* move create_detector and DetectorTypeEnum

* fixed code formatting

* add detector model config models

* fix detector unit tests

* adjust SharedMemory size to largest detector model shape

* fix detector model config defaults

* enable auto-discovery of detectors

* simplify config

* simplify config changes further

* update detectors docs; detect detector configs dynamic

* add suggested changes

* remove custom detector doc

* fix grammar, adjust device defaults
2022-12-15 07:12:52 -06:00

61 lines
1.9 KiB
Python

import logging
import numpy as np
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from typing import Literal
from pydantic import Extra, Field
import tflite_runtime.interpreter as tflite
logger = logging.getLogger(__name__)
DETECTOR_KEY = "cpu"
class CpuDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
num_threads: int = Field(default=3, title="Number of detection threads")
class CpuTfl(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: CpuDetectorConfig):
self.interpreter = tflite.Interpreter(
model_path=detector_config.model.path or "/cpu_model.tflite",
num_threads=detector_config.num_threads or 3,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
self.interpreter.invoke()
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
count = int(
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
)
detections = np.zeros((20, 6), np.float32)
for i in range(count):
if scores[i] < 0.4 or i == 20:
break
detections[i] = [
class_ids[i],
float(scores[i]),
boxes[i][0],
boxes[i][1],
boxes[i][2],
boxes[i][3],
]
return detections