blakeblackshear.frigate/frigate/api/review.py

472 lines
14 KiB
Python

"""Review apis."""
import logging
from datetime import datetime, timedelta
from functools import reduce
import pandas as pd
from flask import Blueprint, jsonify, make_response, request
from peewee import Case, DoesNotExist, fn, operator
from frigate.models import Recordings, ReviewSegment
from frigate.util.builtin import get_tz_modifiers
logger = logging.getLogger(__name__)
ReviewBp = Blueprint("reviews", __name__)
@ReviewBp.route("/review")
def review():
cameras = request.args.get("cameras", "all")
labels = request.args.get("labels", "all")
reviewed = request.args.get("reviewed", type=int, default=0)
limit = request.args.get("limit", type=int, default=None)
severity = request.args.get("severity", None)
before = request.args.get("before", type=float, default=datetime.now().timestamp())
after = request.args.get(
"after", type=float, default=(datetime.now() - timedelta(hours=18)).timestamp()
)
clauses = [((ReviewSegment.start_time > after) & (ReviewSegment.end_time < before))]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((ReviewSegment.camera << camera_list))
if labels != "all":
# use matching so segments with multiple labels
# still match on a search where any label matches
label_clauses = []
filtered_labels = labels.split(",")
for label in filtered_labels:
label_clauses.append(
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
)
label_clause = reduce(operator.or_, label_clauses)
clauses.append((label_clause))
if reviewed == 0:
clauses.append((ReviewSegment.has_been_reviewed == False))
if severity:
clauses.append((ReviewSegment.severity == severity))
review = (
ReviewSegment.select()
.where(reduce(operator.and_, clauses))
.order_by(ReviewSegment.severity.asc())
.order_by(ReviewSegment.start_time.desc())
.limit(limit)
.dicts()
)
return jsonify([r for r in review])
@ReviewBp.route("/review/summary")
def review_summary():
tz_name = request.args.get("timezone", default="utc", type=str)
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(tz_name)
day_ago = (datetime.now() - timedelta(hours=24)).timestamp()
month_ago = (datetime.now() - timedelta(days=30)).timestamp()
cameras = request.args.get("cameras", "all")
labels = request.args.get("labels", "all")
clauses = [(ReviewSegment.start_time > day_ago)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((ReviewSegment.camera << camera_list))
if labels != "all":
# use matching so segments with multiple labels
# still match on a search where any label matches
label_clauses = []
filtered_labels = labels.split(",")
for label in filtered_labels:
label_clauses.append(
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
)
label_clause = reduce(operator.or_, label_clauses)
clauses.append((label_clause))
last_24 = (
ReviewSegment.select(
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_alert"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "detection"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_motion"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
1,
)
],
0,
)
).alias("total_alert"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "detection"),
1,
)
],
0,
)
).alias("total_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
1,
)
],
0,
)
).alias("total_motion"),
)
.where(reduce(operator.and_, clauses))
.dicts()
.get()
)
clauses = [(ReviewSegment.start_time > month_ago)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((ReviewSegment.camera << camera_list))
if labels != "all":
# use matching so segments with multiple labels
# still match on a search where any label matches
label_clauses = []
filtered_labels = labels.split(",")
for label in filtered_labels:
label_clauses.append(
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
)
label_clause = reduce(operator.or_, label_clauses)
clauses.append((label_clause))
last_month = (
ReviewSegment.select(
fn.strftime(
"%Y-%m-%d",
fn.datetime(
ReviewSegment.start_time,
"unixepoch",
hour_modifier,
minute_modifier,
),
).alias("day"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_alert"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "detection"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_motion"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
1,
)
],
0,
)
).alias("total_alert"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "detection"),
1,
)
],
0,
)
).alias("total_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
1,
)
],
0,
)
).alias("total_motion"),
)
.where(reduce(operator.and_, clauses))
.group_by(
(ReviewSegment.start_time + seconds_offset).cast("int") / (3600 * 24),
)
.order_by(ReviewSegment.start_time.desc())
)
data = {
"last24Hours": last_24,
}
for e in last_month.dicts().iterator():
data[e["day"]] = e
return jsonify(data)
@ReviewBp.route("/reviews/viewed", methods=("POST",))
def set_multiple_reviewed():
json: dict[str, any] = request.get_json(silent=True) or {}
list_of_ids = json.get("ids", "")
if not list_of_ids or len(list_of_ids) == 0:
return make_response(
jsonify({"success": False, "message": "Not a valid list of ids"}), 404
)
ReviewSegment.update(has_been_reviewed=True).where(
ReviewSegment.id << list_of_ids
).execute()
return make_response(
jsonify({"success": True, "message": "Reviewed multiple items"}), 200
)
@ReviewBp.route("/review/<id>/viewed", methods=("DELETE",))
def set_not_reviewed(id):
try:
review: ReviewSegment = ReviewSegment.get(ReviewSegment.id == id)
except DoesNotExist:
return make_response(
jsonify({"success": False, "message": "Review " + id + " not found"}), 404
)
review.has_been_reviewed = False
review.save()
return make_response(
jsonify({"success": True, "message": "Reviewed " + id + " not viewed"}), 200
)
@ReviewBp.route("/reviews/<ids>", methods=("DELETE",))
def delete_reviews(ids: str):
list_of_ids = ids.split(",")
if not list_of_ids or len(list_of_ids) == 0:
return make_response(
jsonify({"success": False, "message": "Not a valid list of ids"}), 404
)
ReviewSegment.delete().where(ReviewSegment.id << list_of_ids).execute()
return make_response(jsonify({"success": True, "message": "Delete reviews"}), 200)
@ReviewBp.route("/review/activity/motion")
def motion_activity():
"""Get motion and audio activity."""
cameras = request.args.get("cameras", "all")
before = request.args.get("before", type=float, default=datetime.now().timestamp())
after = request.args.get(
"after", type=float, default=(datetime.now() - timedelta(hours=1)).timestamp()
)
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((Recordings.camera << camera_list))
data: list[Recordings] = (
Recordings.select(
Recordings.start_time,
Recordings.motion,
)
.where(reduce(operator.and_, clauses))
.order_by(Recordings.start_time.asc())
.dicts()
.iterator()
)
# get scale in seconds
scale = request.args.get("scale", type=int, default=30)
# resample data using pandas to get activity on scaled basis
df = pd.DataFrame(data, columns=["start_time", "motion"])
# set date as datetime index
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
df.set_index(["start_time"], inplace=True)
# normalize data
df = (
df.resample(f"{scale}S")
.apply(lambda x: max(x, key=abs, default=0.0))
.fillna(0.0)
)
length = df.shape[0]
chunk = int(60 * (60 / scale))
for i in range(0, length, chunk):
part = df.iloc[i : i + chunk]
df.iloc[i : i + chunk, 0] = (
(part["motion"] - part["motion"].min())
/ (part["motion"].max() - part["motion"].min())
* 100
).fillna(0.0)
# change types for output
df.index = df.index.astype(int) // (10**9)
normalized = df.reset_index().to_dict("records")
return jsonify(normalized)
@ReviewBp.route("/review/activity/audio")
def audio_activity():
"""Get motion and audio activity."""
cameras = request.args.get("cameras", "all")
before = request.args.get("before", type=float, default=datetime.now().timestamp())
after = request.args.get(
"after", type=float, default=(datetime.now() - timedelta(hours=1)).timestamp()
)
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((Recordings.camera << camera_list))
all_recordings: list[Recordings] = (
Recordings.select(
Recordings.start_time,
Recordings.duration,
Recordings.objects,
Recordings.dBFS,
)
.where(reduce(operator.and_, clauses))
.order_by(Recordings.start_time.asc())
.iterator()
)
# format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
# periods where active objects / audio was detected will cause audio to be scaled down
data: list[dict[str, float]] = []
for rec in all_recordings:
data.append(
{
"start_time": rec.start_time,
"audio": rec.dBFS if rec.objects == 0 else 0,
}
)
# get scale in seconds
scale = request.args.get("scale", type=int, default=30)
# resample data using pandas to get activity on scaled basis
df = pd.DataFrame(data, columns=["start_time", "audio"])
# set date as datetime index
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
df.set_index(["start_time"], inplace=True)
# normalize data
df = df.resample(f"{scale}S").mean().fillna(0.0)
df["audio"] = (
(df["audio"] - df["audio"].max())
/ (df["audio"].min() - df["audio"].max())
* -100
)
# change types for output
df.index = df.index.astype(int) // (10**9)
normalized = df.reset_index().to_dict("records")
return jsonify(normalized)