mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Adding Models * Final Async Update * Bug Fixing * Fix * Adding fixes * Working async infer * Final Documenatation and debug update * Removing some extra prints * Post-process correct label push * config docs fix * Review Fix * Review fix 2.0 * Fixing the ASYNC API to work from 30ms to 10ms * Fix for multi stream async infernce * Format * Fix #3 * Format#2 * Remove Unnessery includes * Sort Imports
		
			
				
	
	
		
			451 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			451 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| import logging
 | |
| import os
 | |
| import queue
 | |
| import subprocess
 | |
| import threading
 | |
| import urllib.request
 | |
| from functools import partial
 | |
| from typing import Dict, List, Optional, Tuple
 | |
| 
 | |
| import cv2
 | |
| import numpy as np
 | |
| 
 | |
| try:
 | |
|     from hailo_platform import (
 | |
|         HEF,
 | |
|         FormatType,
 | |
|         HailoSchedulingAlgorithm,
 | |
|         VDevice,
 | |
|     )
 | |
| except ModuleNotFoundError:
 | |
|     pass
 | |
| 
 | |
| from pydantic import Field
 | |
| from typing_extensions import Literal
 | |
| 
 | |
| from frigate.const import MODEL_CACHE_DIR
 | |
| from frigate.detectors.detection_api import DetectionApi
 | |
| from frigate.detectors.detector_config import (
 | |
|     BaseDetectorConfig,
 | |
| )
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| # ----------------- ResponseStore Class ----------------- #
 | |
| class ResponseStore:
 | |
|     """
 | |
|     A thread-safe hash-based response store that maps request IDs
 | |
|     to their results. Threads can wait on the condition variable until
 | |
|     their request's result appears.
 | |
|     """
 | |
| 
 | |
|     def __init__(self):
 | |
|         self.responses = {}  # Maps request_id -> (original_input, infer_results)
 | |
|         self.lock = threading.Lock()
 | |
|         self.cond = threading.Condition(self.lock)
 | |
| 
 | |
|     def put(self, request_id, response):
 | |
|         with self.cond:
 | |
|             self.responses[request_id] = response
 | |
|             self.cond.notify_all()
 | |
| 
 | |
|     def get(self, request_id, timeout=None):
 | |
|         with self.cond:
 | |
|             if not self.cond.wait_for(
 | |
|                 lambda: request_id in self.responses, timeout=timeout
 | |
|             ):
 | |
|                 raise TimeoutError(f"Timeout waiting for response {request_id}")
 | |
|             return self.responses.pop(request_id)
 | |
| 
 | |
| 
 | |
| # ----------------- Utility Functions ----------------- #
 | |
| 
 | |
| 
 | |
| def preprocess_tensor(image: np.ndarray, model_w: int, model_h: int) -> np.ndarray:
 | |
|     """
 | |
|     Resize an image with unchanged aspect ratio using padding.
 | |
|     Assumes input image shape is (H, W, 3).
 | |
|     """
 | |
|     if image.ndim == 4 and image.shape[0] == 1:
 | |
|         image = image[0]
 | |
| 
 | |
|     h, w = image.shape[:2]
 | |
| 
 | |
|     if (w, h) == (320, 320) and (model_w, model_h) == (640, 640):
 | |
|         return cv2.resize(image, (model_w, model_h), interpolation=cv2.INTER_LINEAR)
 | |
| 
 | |
|     scale = min(model_w / w, model_h / h)
 | |
|     new_w, new_h = int(w * scale), int(h * scale)
 | |
|     resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
 | |
|     padded_image = np.full((model_h, model_w, 3), 114, dtype=image.dtype)
 | |
|     x_offset = (model_w - new_w) // 2
 | |
|     y_offset = (model_h - new_h) // 2
 | |
|     padded_image[y_offset : y_offset + new_h, x_offset : x_offset + new_w] = (
 | |
|         resized_image
 | |
|     )
 | |
|     return padded_image
 | |
| 
 | |
| 
 | |
| # ----------------- Global Constants ----------------- #
 | |
| DETECTOR_KEY = "hailo8l"
 | |
| ARCH = None
 | |
| H8_DEFAULT_MODEL = "yolov6n.hef"
 | |
| H8L_DEFAULT_MODEL = "yolov6n.hef"
 | |
| H8_DEFAULT_URL = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/yolov6n.hef"
 | |
| H8L_DEFAULT_URL = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/yolov6n.hef"
 | |
| 
 | |
| 
 | |
| def detect_hailo_arch():
 | |
|     try:
 | |
|         result = subprocess.run(
 | |
|             ["hailortcli", "fw-control", "identify"], capture_output=True, text=True
 | |
|         )
 | |
|         if result.returncode != 0:
 | |
|             logger.error(f"Inference error: {result.stderr}")
 | |
|             return None
 | |
|         for line in result.stdout.split("\n"):
 | |
|             if "Device Architecture" in line:
 | |
|                 if "HAILO8L" in line:
 | |
|                     return "hailo8l"
 | |
|                 elif "HAILO8" in line:
 | |
|                     return "hailo8"
 | |
|         logger.error("Inference error: Could not determine Hailo architecture.")
 | |
|         return None
 | |
|     except Exception as e:
 | |
|         logger.error(f"Inference error: {e}")
 | |
|         return None
 | |
| 
 | |
| 
 | |
| # ----------------- HailoAsyncInference Class ----------------- #
 | |
| class HailoAsyncInference:
 | |
|     def __init__(
 | |
|         self,
 | |
|         hef_path: str,
 | |
|         input_queue: queue.Queue,
 | |
|         output_store: ResponseStore,
 | |
|         batch_size: int = 1,
 | |
|         input_type: Optional[str] = None,
 | |
|         output_type: Optional[Dict[str, str]] = None,
 | |
|         send_original_frame: bool = False,
 | |
|     ) -> None:
 | |
|         self.input_queue = input_queue
 | |
|         self.output_store = output_store
 | |
| 
 | |
|         params = VDevice.create_params()
 | |
|         params.scheduling_algorithm = HailoSchedulingAlgorithm.ROUND_ROBIN
 | |
| 
 | |
|         self.hef = HEF(hef_path)
 | |
|         self.target = VDevice(params)
 | |
|         self.infer_model = self.target.create_infer_model(hef_path)
 | |
|         self.infer_model.set_batch_size(batch_size)
 | |
|         if input_type is not None:
 | |
|             self._set_input_type(input_type)
 | |
|         if output_type is not None:
 | |
|             self._set_output_type(output_type)
 | |
|         self.output_type = output_type
 | |
|         self.send_original_frame = send_original_frame
 | |
| 
 | |
|     def _set_input_type(self, input_type: Optional[str] = None) -> None:
 | |
|         self.infer_model.input().set_format_type(getattr(FormatType, input_type))
 | |
| 
 | |
|     def _set_output_type(
 | |
|         self, output_type_dict: Optional[Dict[str, str]] = None
 | |
|     ) -> None:
 | |
|         for output_name, output_type in output_type_dict.items():
 | |
|             self.infer_model.output(output_name).set_format_type(
 | |
|                 getattr(FormatType, output_type)
 | |
|             )
 | |
| 
 | |
|     def callback(
 | |
|         self,
 | |
|         completion_info,
 | |
|         bindings_list: List,
 | |
|         input_batch: List,
 | |
|         request_ids: List[int],
 | |
|     ):
 | |
|         if completion_info.exception:
 | |
|             logger.error(f"Inference error: {completion_info.exception}")
 | |
|         else:
 | |
|             for i, bindings in enumerate(bindings_list):
 | |
|                 if len(bindings._output_names) == 1:
 | |
|                     result = bindings.output().get_buffer()
 | |
|                 else:
 | |
|                     result = {
 | |
|                         name: np.expand_dims(bindings.output(name).get_buffer(), axis=0)
 | |
|                         for name in bindings._output_names
 | |
|                     }
 | |
|                 self.output_store.put(request_ids[i], (input_batch[i], result))
 | |
| 
 | |
|     def _create_bindings(self, configured_infer_model) -> object:
 | |
|         if self.output_type is None:
 | |
|             output_buffers = {
 | |
|                 output_info.name: np.empty(
 | |
|                     self.infer_model.output(output_info.name).shape,
 | |
|                     dtype=getattr(
 | |
|                         np, str(output_info.format.type).split(".")[1].lower()
 | |
|                     ),
 | |
|                 )
 | |
|                 for output_info in self.hef.get_output_vstream_infos()
 | |
|             }
 | |
|         else:
 | |
|             output_buffers = {
 | |
|                 name: np.empty(
 | |
|                     self.infer_model.output(name).shape,
 | |
|                     dtype=getattr(np, self.output_type[name].lower()),
 | |
|                 )
 | |
|                 for name in self.output_type
 | |
|             }
 | |
|         return configured_infer_model.create_bindings(output_buffers=output_buffers)
 | |
| 
 | |
|     def get_input_shape(self) -> Tuple[int, ...]:
 | |
|         return self.hef.get_input_vstream_infos()[0].shape
 | |
| 
 | |
|     def run(self) -> None:
 | |
|         with self.infer_model.configure() as configured_infer_model:
 | |
|             while True:
 | |
|                 batch_data = self.input_queue.get()
 | |
|                 if batch_data is None:
 | |
|                     break
 | |
|                 request_id, frame_data = batch_data
 | |
|                 preprocessed_batch = [frame_data]
 | |
|                 request_ids = [request_id]
 | |
|                 input_batch = preprocessed_batch  # non-send_original_frame mode
 | |
| 
 | |
|                 bindings_list = []
 | |
|                 for frame in preprocessed_batch:
 | |
|                     bindings = self._create_bindings(configured_infer_model)
 | |
|                     bindings.input().set_buffer(np.array(frame))
 | |
|                     bindings_list.append(bindings)
 | |
|                 configured_infer_model.wait_for_async_ready(timeout_ms=10000)
 | |
|                 job = configured_infer_model.run_async(
 | |
|                     bindings_list,
 | |
|                     partial(
 | |
|                         self.callback,
 | |
|                         input_batch=input_batch,
 | |
|                         request_ids=request_ids,
 | |
|                         bindings_list=bindings_list,
 | |
|                     ),
 | |
|                 )
 | |
|             job.wait(100)
 | |
| 
 | |
| 
 | |
| # ----------------- HailoDetector Class ----------------- #
 | |
| class HailoDetector(DetectionApi):
 | |
|     type_key = DETECTOR_KEY
 | |
| 
 | |
|     def __init__(self, detector_config: "HailoDetectorConfig"):
 | |
|         global ARCH
 | |
|         ARCH = detect_hailo_arch()
 | |
|         self.cache_dir = MODEL_CACHE_DIR
 | |
|         self.device_type = detector_config.device
 | |
|         self.model_height = (
 | |
|             detector_config.model.height
 | |
|             if hasattr(detector_config.model, "height")
 | |
|             else None
 | |
|         )
 | |
|         self.model_width = (
 | |
|             detector_config.model.width
 | |
|             if hasattr(detector_config.model, "width")
 | |
|             else None
 | |
|         )
 | |
|         self.model_type = (
 | |
|             detector_config.model.model_type
 | |
|             if hasattr(detector_config.model, "model_type")
 | |
|             else None
 | |
|         )
 | |
|         self.tensor_format = (
 | |
|             detector_config.model.input_tensor
 | |
|             if hasattr(detector_config.model, "input_tensor")
 | |
|             else None
 | |
|         )
 | |
|         self.pixel_format = (
 | |
|             detector_config.model.input_pixel_format
 | |
|             if hasattr(detector_config.model, "input_pixel_format")
 | |
|             else None
 | |
|         )
 | |
|         self.input_dtype = (
 | |
|             detector_config.model.input_dtype
 | |
|             if hasattr(detector_config.model, "input_dtype")
 | |
|             else None
 | |
|         )
 | |
|         self.output_type = "FLOAT32"
 | |
|         self.set_path_and_url(detector_config.model.path)
 | |
|         self.working_model_path = self.check_and_prepare()
 | |
| 
 | |
|         self.batch_size = 1
 | |
|         self.input_queue = queue.Queue()
 | |
|         self.response_store = ResponseStore()
 | |
|         self.request_counter = 0
 | |
|         self.request_counter_lock = threading.Lock()
 | |
| 
 | |
|         try:
 | |
|             logger.debug(f"[INIT] Loading HEF model from {self.working_model_path}")
 | |
|             self.inference_engine = HailoAsyncInference(
 | |
|                 self.working_model_path,
 | |
|                 self.input_queue,
 | |
|                 self.response_store,
 | |
|                 self.batch_size,
 | |
|             )
 | |
|             self.input_shape = self.inference_engine.get_input_shape()
 | |
|             logger.debug(f"[INIT] Model input shape: {self.input_shape}")
 | |
|             self.inference_thread = threading.Thread(
 | |
|                 target=self.inference_engine.run, daemon=True
 | |
|             )
 | |
|             self.inference_thread.start()
 | |
|         except Exception as e:
 | |
|             logger.error(f"[INIT] Failed to initialize HailoAsyncInference: {e}")
 | |
|             raise
 | |
| 
 | |
|     def set_path_and_url(self, path: str = None):
 | |
|         if not path:
 | |
|             self.model_path = None
 | |
|             self.url = None
 | |
|             return
 | |
|         if self.is_url(path):
 | |
|             self.url = path
 | |
|             self.model_path = None
 | |
|         else:
 | |
|             self.model_path = path
 | |
|             self.url = None
 | |
| 
 | |
|     def is_url(self, url: str) -> bool:
 | |
|         return (
 | |
|             url.startswith("http://")
 | |
|             or url.startswith("https://")
 | |
|             or url.startswith("www.")
 | |
|         )
 | |
| 
 | |
|     @staticmethod
 | |
|     def extract_model_name(path: str = None, url: str = None) -> str:
 | |
|         if path and path.endswith(".hef"):
 | |
|             return os.path.basename(path)
 | |
|         elif url and url.endswith(".hef"):
 | |
|             return os.path.basename(url)
 | |
|         else:
 | |
|             if ARCH == "hailo8":
 | |
|                 return H8_DEFAULT_MODEL
 | |
|             else:
 | |
|                 return H8L_DEFAULT_MODEL
 | |
| 
 | |
|     @staticmethod
 | |
|     def download_model(url: str, destination: str):
 | |
|         if not url.endswith(".hef"):
 | |
|             raise ValueError("Invalid model URL. Only .hef files are supported.")
 | |
|         try:
 | |
|             urllib.request.urlretrieve(url, destination)
 | |
|             logger.debug(f"Downloaded model to {destination}")
 | |
|         except Exception as e:
 | |
|             raise RuntimeError(f"Failed to download model from {url}: {str(e)}")
 | |
| 
 | |
|     def check_and_prepare(self) -> str:
 | |
|         if not os.path.exists(self.cache_dir):
 | |
|             os.makedirs(self.cache_dir)
 | |
|         model_name = self.extract_model_name(self.model_path, self.url)
 | |
|         cached_model_path = os.path.join(self.cache_dir, model_name)
 | |
|         if not self.model_path and not self.url:
 | |
|             if os.path.exists(cached_model_path):
 | |
|                 logger.debug(f"Model found in cache: {cached_model_path}")
 | |
|                 return cached_model_path
 | |
|             else:
 | |
|                 logger.debug(f"Downloading default model: {model_name}")
 | |
|                 if ARCH == "hailo8":
 | |
|                     self.download_model(H8_DEFAULT_URL, cached_model_path)
 | |
|                 else:
 | |
|                     self.download_model(H8L_DEFAULT_URL, cached_model_path)
 | |
|         elif self.url:
 | |
|             logger.debug(f"Downloading model from URL: {self.url}")
 | |
|             self.download_model(self.url, cached_model_path)
 | |
|         elif self.model_path:
 | |
|             if os.path.exists(self.model_path):
 | |
|                 logger.debug(f"Using existing model at: {self.model_path}")
 | |
|                 return self.model_path
 | |
|             else:
 | |
|                 raise FileNotFoundError(f"Model file not found at: {self.model_path}")
 | |
|         return cached_model_path
 | |
| 
 | |
|     def _get_request_id(self) -> int:
 | |
|         with self.request_counter_lock:
 | |
|             request_id = self.request_counter
 | |
|             self.request_counter += 1
 | |
|             if self.request_counter > 1000000:
 | |
|                 self.request_counter = 0
 | |
|         return request_id
 | |
| 
 | |
|     def detect_raw(self, tensor_input):
 | |
|         request_id = self._get_request_id()
 | |
| 
 | |
|         tensor_input = self.preprocess(tensor_input)
 | |
|         if isinstance(tensor_input, np.ndarray) and len(tensor_input.shape) == 3:
 | |
|             tensor_input = np.expand_dims(tensor_input, axis=0)
 | |
| 
 | |
|         self.input_queue.put((request_id, tensor_input))
 | |
|         try:
 | |
|             original_input, infer_results = self.response_store.get(
 | |
|                 request_id, timeout=10.0
 | |
|             )
 | |
|         except TimeoutError:
 | |
|             logger.error(
 | |
|                 f"Timeout waiting for inference results for request {request_id}"
 | |
|             )
 | |
|             return np.zeros((20, 6), dtype=np.float32)
 | |
| 
 | |
|         if isinstance(infer_results, list) and len(infer_results) == 1:
 | |
|             infer_results = infer_results[0]
 | |
| 
 | |
|         threshold = 0.4
 | |
|         all_detections = []
 | |
|         for class_id, detection_set in enumerate(infer_results):
 | |
|             if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
 | |
|                 continue
 | |
|             for det in detection_set:
 | |
|                 if det.shape[0] < 5:
 | |
|                     continue
 | |
|                 score = float(det[4])
 | |
|                 if score < threshold:
 | |
|                     continue
 | |
|                 all_detections.append([class_id, score, det[0], det[1], det[2], det[3]])
 | |
| 
 | |
|         if len(all_detections) == 0:
 | |
|             detections_array = np.zeros((20, 6), dtype=np.float32)
 | |
|         else:
 | |
|             detections_array = np.array(all_detections, dtype=np.float32)
 | |
|             if detections_array.shape[0] > 20:
 | |
|                 detections_array = detections_array[:20, :]
 | |
|             elif detections_array.shape[0] < 20:
 | |
|                 pad = np.zeros((20 - detections_array.shape[0], 6), dtype=np.float32)
 | |
|                 detections_array = np.vstack((detections_array, pad))
 | |
| 
 | |
|         return detections_array
 | |
| 
 | |
|     def preprocess(self, image):
 | |
|         if isinstance(image, np.ndarray):
 | |
|             processed = preprocess_tensor(
 | |
|                 image, self.input_shape[1], self.input_shape[0]
 | |
|             )
 | |
|             return np.expand_dims(processed, axis=0)
 | |
|         else:
 | |
|             raise ValueError("Unsupported image format for preprocessing")
 | |
| 
 | |
|     def close(self):
 | |
|         """Properly shuts down the inference engine and releases the VDevice."""
 | |
|         logger.debug("[CLOSE] Closing HailoDetector")
 | |
|         try:
 | |
|             if hasattr(self, "inference_engine"):
 | |
|                 if hasattr(self.inference_engine, "target"):
 | |
|                     self.inference_engine.target.release()
 | |
|                 logger.debug("Hailo VDevice released successfully")
 | |
|         except Exception as e:
 | |
|             logger.error(f"Failed to close Hailo device: {e}")
 | |
|             raise
 | |
| 
 | |
|     def __del__(self):
 | |
|         """Destructor to ensure cleanup when the object is deleted."""
 | |
|         self.close()
 | |
| 
 | |
| 
 | |
| # ----------------- HailoDetectorConfig Class ----------------- #
 | |
| class HailoDetectorConfig(BaseDetectorConfig):
 | |
|     type: Literal[DETECTOR_KEY]
 | |
|     device: str = Field(default="PCIe", title="Device Type")
 |