mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Move object detection to folder * Add input store type * Add hwnc * Add hwcn * Fix test
		
			
				
	
	
		
			110 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			110 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
import datetime
 | 
						|
import multiprocessing as mp
 | 
						|
from statistics import mean
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
import frigate.util as util
 | 
						|
from frigate.config import DetectorTypeEnum
 | 
						|
from frigate.object_detection.base import (
 | 
						|
    ObjectDetectProcess,
 | 
						|
    RemoteObjectDetector,
 | 
						|
    load_labels,
 | 
						|
)
 | 
						|
 | 
						|
my_frame = np.expand_dims(np.full((300, 300, 3), 1, np.uint8), axis=0)
 | 
						|
labels = load_labels("/labelmap.txt")
 | 
						|
 | 
						|
######
 | 
						|
# Minimal same process runner
 | 
						|
######
 | 
						|
# object_detector = LocalObjectDetector()
 | 
						|
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
 | 
						|
 | 
						|
# start = datetime.datetime.now().timestamp()
 | 
						|
 | 
						|
# frame_times = []
 | 
						|
# for x in range(0, 1000):
 | 
						|
#   start_frame = datetime.datetime.now().timestamp()
 | 
						|
 | 
						|
#   tensor_input[:] = my_frame
 | 
						|
#   detections = object_detector.detect_raw(tensor_input)
 | 
						|
#   parsed_detections = []
 | 
						|
#   for d in detections:
 | 
						|
#       if d[1] < 0.4:
 | 
						|
#           break
 | 
						|
#       parsed_detections.append((
 | 
						|
#           labels[int(d[0])],
 | 
						|
#           float(d[1]),
 | 
						|
#           (d[2], d[3], d[4], d[5])
 | 
						|
#       ))
 | 
						|
#   frame_times.append(datetime.datetime.now().timestamp()-start_frame)
 | 
						|
 | 
						|
# duration = datetime.datetime.now().timestamp()-start
 | 
						|
# print(f"Processed for {duration:.2f} seconds.")
 | 
						|
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
 | 
						|
 | 
						|
 | 
						|
def start(id, num_detections, detection_queue, event):
 | 
						|
    object_detector = RemoteObjectDetector(
 | 
						|
        str(id), "/labelmap.txt", detection_queue, event
 | 
						|
    )
 | 
						|
    start = datetime.datetime.now().timestamp()
 | 
						|
 | 
						|
    frame_times = []
 | 
						|
    for x in range(0, num_detections):
 | 
						|
        start_frame = datetime.datetime.now().timestamp()
 | 
						|
        object_detector.detect(my_frame)
 | 
						|
        frame_times.append(datetime.datetime.now().timestamp() - start_frame)
 | 
						|
 | 
						|
    duration = datetime.datetime.now().timestamp() - start
 | 
						|
    object_detector.cleanup()
 | 
						|
    print(f"{id} - Processed for {duration:.2f} seconds.")
 | 
						|
    print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
 | 
						|
    print(f"{id} - Average frame processing time: {mean(frame_times) * 1000:.2f}ms")
 | 
						|
 | 
						|
 | 
						|
######
 | 
						|
# Separate process runner
 | 
						|
######
 | 
						|
# event = mp.Event()
 | 
						|
# detection_queue = mp.Queue()
 | 
						|
# edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0')
 | 
						|
 | 
						|
# start(1, 1000, edgetpu_process.detection_queue, event)
 | 
						|
# print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
 | 
						|
 | 
						|
####
 | 
						|
# Multiple camera processes
 | 
						|
####
 | 
						|
camera_processes = []
 | 
						|
 | 
						|
events = {}
 | 
						|
for x in range(0, 10):
 | 
						|
    events[str(x)] = mp.Event()
 | 
						|
detection_queue = mp.Queue()
 | 
						|
edgetpu_process_1 = ObjectDetectProcess(
 | 
						|
    detection_queue, events, DetectorTypeEnum.edgetpu, "usb:0"
 | 
						|
)
 | 
						|
edgetpu_process_2 = ObjectDetectProcess(
 | 
						|
    detection_queue, events, DetectorTypeEnum.edgetpu, "usb:1"
 | 
						|
)
 | 
						|
 | 
						|
for x in range(0, 10):
 | 
						|
    camera_process = util.Process(
 | 
						|
        target=start, args=(x, 300, detection_queue, events[str(x)])
 | 
						|
    )
 | 
						|
    camera_process.daemon = True
 | 
						|
    camera_processes.append(camera_process)
 | 
						|
 | 
						|
start_time = datetime.datetime.now().timestamp()
 | 
						|
 | 
						|
for p in camera_processes:
 | 
						|
    p.start()
 | 
						|
 | 
						|
for p in camera_processes:
 | 
						|
    p.join()
 | 
						|
 | 
						|
duration = datetime.datetime.now().timestamp() - start_time
 | 
						|
print(f"Total - Processed for {duration:.2f} seconds.")
 |