mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-02 00:07:11 +01:00
a65aaab849
* Fix ROCm input name * Fix incorrect parsing of None
172 lines
5.6 KiB
Python
172 lines
5.6 KiB
Python
import ctypes
|
|
import logging
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import (
|
|
BaseDetectorConfig,
|
|
ModelTypeEnum,
|
|
PixelFormatEnum,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "rocm"
|
|
|
|
|
|
def detect_gfx_version():
|
|
return subprocess.getoutput(
|
|
"unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'"
|
|
)
|
|
|
|
|
|
def auto_override_gfx_version():
|
|
# If environment variable already in place, do not override
|
|
gfx_version = detect_gfx_version()
|
|
old_override = os.getenv("HSA_OVERRIDE_GFX_VERSION")
|
|
if old_override not in (None, ""):
|
|
logger.warning(
|
|
f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!"
|
|
)
|
|
return old_override
|
|
mapping = {
|
|
"gfx90c": "9.0.0",
|
|
"gfx1031": "10.3.0",
|
|
"gfx1103": "11.0.0",
|
|
}
|
|
override = mapping.get(gfx_version)
|
|
if override is not None:
|
|
logger.warning(
|
|
f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}"
|
|
)
|
|
os.putenv("HSA_OVERRIDE_GFX_VERSION", override)
|
|
return override
|
|
return ""
|
|
|
|
|
|
class ROCmDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
conserve_cpu: bool = Field(
|
|
default=True,
|
|
title="Conserve CPU at the expense of latency (and reduced max throughput)",
|
|
)
|
|
auto_override_gfx: bool = Field(
|
|
default=True, title="Automatically detect and override gfx version"
|
|
)
|
|
|
|
|
|
class ROCmDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: ROCmDetectorConfig):
|
|
if detector_config.auto_override_gfx:
|
|
auto_override_gfx_version()
|
|
|
|
try:
|
|
sys.path.append("/opt/rocm/lib")
|
|
import migraphx
|
|
|
|
logger.info("AMD/ROCm: loaded migraphx module")
|
|
except ModuleNotFoundError:
|
|
logger.error("AMD/ROCm: module loading failed, missing ROCm environment?")
|
|
raise
|
|
|
|
if detector_config.conserve_cpu:
|
|
logger.info("AMD/ROCm: switching HIP to blocking mode to conserve CPU")
|
|
ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4)
|
|
|
|
self.h = detector_config.model.height
|
|
self.w = detector_config.model.width
|
|
self.rocm_model_type = detector_config.model.model_type
|
|
self.rocm_model_px = detector_config.model.input_pixel_format
|
|
path = detector_config.model.path
|
|
|
|
mxr_path = os.path.splitext(path)[0] + ".mxr"
|
|
if path.endswith(".mxr"):
|
|
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
|
self.model = migraphx.load(mxr_path)
|
|
elif os.path.exists(mxr_path):
|
|
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
|
self.model = migraphx.load(mxr_path)
|
|
else:
|
|
logger.info(f"AMD/ROCm: loading model from {path}")
|
|
|
|
if path.endswith(".onnx"):
|
|
self.model = migraphx.parse_onnx(path)
|
|
elif (
|
|
path.endswith(".tf")
|
|
or path.endswith(".tf2")
|
|
or path.endswith(".tflite")
|
|
):
|
|
# untested
|
|
self.model = migraphx.parse_tf(path)
|
|
else:
|
|
raise Exception(f"AMD/ROCm: unknown model format {path}")
|
|
|
|
logger.info("AMD/ROCm: compiling the model")
|
|
|
|
self.model.compile(
|
|
migraphx.get_target("gpu"), offload_copy=True, fast_math=True
|
|
)
|
|
|
|
logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}")
|
|
|
|
os.makedirs("/config/model_cache/rocm", exist_ok=True)
|
|
migraphx.save(self.model, mxr_path)
|
|
|
|
logger.info("AMD/ROCm: model loaded")
|
|
|
|
def detect_raw(self, tensor_input):
|
|
model_input_name = self.model.get_parameter_names()[0]
|
|
model_input_shape = tuple(
|
|
self.model.get_parameter_shapes()[model_input_name].lens()
|
|
)
|
|
|
|
tensor_input = cv2.dnn.blobFromImage(
|
|
tensor_input[0],
|
|
1.0,
|
|
(model_input_shape[3], model_input_shape[2]),
|
|
None,
|
|
swapRB=self.rocm_model_px == PixelFormatEnum.bgr,
|
|
).astype(np.uint8)
|
|
|
|
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
|
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
|
|
|
tensor_output = np.ctypeslib.as_array(
|
|
addr, shape=detector_result.get_shape().lens()
|
|
)
|
|
|
|
if self.rocm_model_type == ModelTypeEnum.yolonas:
|
|
predictions = tensor_output
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
for i, prediction in enumerate(predictions):
|
|
if i == 20:
|
|
break
|
|
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
|
|
# when running in GPU mode, empty predictions in the output have class_id of -1
|
|
if class_id < 0:
|
|
break
|
|
detections[i] = [
|
|
class_id,
|
|
confidence,
|
|
y_min / self.h,
|
|
x_min / self.w,
|
|
y_max / self.h,
|
|
x_max / self.w,
|
|
]
|
|
return detections
|
|
else:
|
|
raise Exception(
|
|
f"{self.rocm_model_type} is currently not supported for rocm. See the docs for more info on supported models."
|
|
)
|