mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Remove imutils * Ensure that state is maintained when setting search params * Change script for version of setuptools * Fix * Fix
		
			
				
	
	
		
			250 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			250 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| 
 | |
| import cv2
 | |
| import numpy as np
 | |
| from scipy.ndimage import gaussian_filter
 | |
| 
 | |
| from frigate.camera import PTZMetrics
 | |
| from frigate.comms.config_updater import ConfigSubscriber
 | |
| from frigate.config import MotionConfig
 | |
| from frigate.motion import MotionDetector
 | |
| from frigate.util.image import grab_cv2_contours
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| class ImprovedMotionDetector(MotionDetector):
 | |
|     def __init__(
 | |
|         self,
 | |
|         frame_shape,
 | |
|         config: MotionConfig,
 | |
|         fps: int,
 | |
|         ptz_metrics: PTZMetrics = None,
 | |
|         name="improved",
 | |
|         blur_radius=1,
 | |
|         interpolation=cv2.INTER_NEAREST,
 | |
|         contrast_frame_history=50,
 | |
|     ):
 | |
|         self.name = name
 | |
|         self.config = config
 | |
|         self.frame_shape = frame_shape
 | |
|         self.resize_factor = frame_shape[0] / config.frame_height
 | |
|         self.motion_frame_size = (
 | |
|             config.frame_height,
 | |
|             config.frame_height * frame_shape[1] // frame_shape[0],
 | |
|         )
 | |
|         self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
 | |
|         self.motion_frame_count = 0
 | |
|         self.frame_counter = 0
 | |
|         resized_mask = cv2.resize(
 | |
|             config.mask,
 | |
|             dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
 | |
|             interpolation=cv2.INTER_AREA,
 | |
|         )
 | |
|         self.mask = np.where(resized_mask == [0])
 | |
|         self.save_images = False
 | |
|         self.calibrating = True
 | |
|         self.blur_radius = blur_radius
 | |
|         self.interpolation = interpolation
 | |
|         self.contrast_values = np.zeros((contrast_frame_history, 2), np.uint8)
 | |
|         self.contrast_values[:, 1:2] = 255
 | |
|         self.contrast_values_index = 0
 | |
|         self.config_subscriber = ConfigSubscriber(f"config/motion/{name}", True)
 | |
|         self.ptz_metrics = ptz_metrics
 | |
|         self.last_stop_time = None
 | |
| 
 | |
|     def is_calibrating(self):
 | |
|         return self.calibrating
 | |
| 
 | |
|     def detect(self, frame):
 | |
|         motion_boxes = []
 | |
| 
 | |
|         # check for updated motion config
 | |
|         _, updated_motion_config = self.config_subscriber.check_for_update()
 | |
| 
 | |
|         if updated_motion_config:
 | |
|             self.config = updated_motion_config
 | |
| 
 | |
|         if not self.config.enabled:
 | |
|             return motion_boxes
 | |
| 
 | |
|         # if ptz motor is moving from autotracking, quickly return
 | |
|         # a single box that is 80% of the frame
 | |
|         if (
 | |
|             self.ptz_metrics.autotracker_enabled.value
 | |
|             and not self.ptz_metrics.motor_stopped.is_set()
 | |
|         ):
 | |
|             return [
 | |
|                 (
 | |
|                     int(self.frame_shape[1] * 0.1),
 | |
|                     int(self.frame_shape[0] * 0.1),
 | |
|                     int(self.frame_shape[1] * 0.9),
 | |
|                     int(self.frame_shape[0] * 0.9),
 | |
|                 )
 | |
|             ]
 | |
| 
 | |
|         gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
 | |
| 
 | |
|         # resize frame
 | |
|         resized_frame = cv2.resize(
 | |
|             gray,
 | |
|             dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
 | |
|             interpolation=self.interpolation,
 | |
|         )
 | |
| 
 | |
|         if self.save_images:
 | |
|             resized_saved = resized_frame.copy()
 | |
| 
 | |
|         # Improve contrast
 | |
|         if self.config.improve_contrast:
 | |
|             # TODO tracking moving average of min/max to avoid sudden contrast changes
 | |
|             min_value = np.percentile(resized_frame, 4).astype(np.uint8)
 | |
|             max_value = np.percentile(resized_frame, 96).astype(np.uint8)
 | |
|             # skip contrast calcs if the image is a single color
 | |
|             if min_value < max_value:
 | |
|                 # keep track of the last 50 contrast values
 | |
|                 self.contrast_values[self.contrast_values_index] = [
 | |
|                     min_value,
 | |
|                     max_value,
 | |
|                 ]
 | |
|                 self.contrast_values_index += 1
 | |
|                 if self.contrast_values_index == len(self.contrast_values):
 | |
|                     self.contrast_values_index = 0
 | |
| 
 | |
|                 avg_min, avg_max = np.mean(self.contrast_values, axis=0)
 | |
| 
 | |
|                 resized_frame = np.clip(resized_frame, avg_min, avg_max)
 | |
|                 resized_frame = (
 | |
|                     ((resized_frame - avg_min) / (avg_max - avg_min)) * 255
 | |
|                 ).astype(np.uint8)
 | |
| 
 | |
|         if self.save_images:
 | |
|             contrasted_saved = resized_frame.copy()
 | |
| 
 | |
|         # mask frame
 | |
|         # this has to come after contrast improvement
 | |
|         # Setting masked pixels to zero, to match the average frame at startup
 | |
|         resized_frame[self.mask] = [0]
 | |
| 
 | |
|         resized_frame = gaussian_filter(resized_frame, sigma=1, radius=self.blur_radius)
 | |
| 
 | |
|         if self.save_images:
 | |
|             blurred_saved = resized_frame.copy()
 | |
| 
 | |
|         if self.save_images or self.calibrating:
 | |
|             self.frame_counter += 1
 | |
|         # compare to average
 | |
|         frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
 | |
| 
 | |
|         # compute the threshold image for the current frame
 | |
|         thresh = cv2.threshold(
 | |
|             frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY
 | |
|         )[1]
 | |
| 
 | |
|         # dilate the thresholded image to fill in holes, then find contours
 | |
|         # on thresholded image
 | |
|         thresh_dilated = cv2.dilate(thresh, None, iterations=1)
 | |
|         contours = cv2.findContours(
 | |
|             thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
 | |
|         )
 | |
|         contours = grab_cv2_contours(contours)
 | |
| 
 | |
|         # loop over the contours
 | |
|         total_contour_area = 0
 | |
|         for c in contours:
 | |
|             # if the contour is big enough, count it as motion
 | |
|             contour_area = cv2.contourArea(c)
 | |
|             total_contour_area += contour_area
 | |
|             if contour_area > self.config.contour_area:
 | |
|                 x, y, w, h = cv2.boundingRect(c)
 | |
|                 motion_boxes.append(
 | |
|                     (
 | |
|                         int(x * self.resize_factor),
 | |
|                         int(y * self.resize_factor),
 | |
|                         int((x + w) * self.resize_factor),
 | |
|                         int((y + h) * self.resize_factor),
 | |
|                     )
 | |
|                 )
 | |
| 
 | |
|         pct_motion = total_contour_area / (
 | |
|             self.motion_frame_size[0] * self.motion_frame_size[1]
 | |
|         )
 | |
| 
 | |
|         # check if the motor has just stopped from autotracking
 | |
|         # if so, reassign the average to the current frame so we begin with a new baseline
 | |
|         if (
 | |
|             # ensure we only do this for cameras with autotracking enabled
 | |
|             self.ptz_metrics.autotracker_enabled.value
 | |
|             and self.ptz_metrics.motor_stopped.is_set()
 | |
|             and (
 | |
|                 self.last_stop_time is None
 | |
|                 or self.ptz_metrics.stop_time.value != self.last_stop_time
 | |
|             )
 | |
|             # value is 0 on startup or when motor is moving
 | |
|             and self.ptz_metrics.stop_time.value != 0
 | |
|         ):
 | |
|             self.last_stop_time = self.ptz_metrics.stop_time.value
 | |
| 
 | |
|             self.avg_frame = resized_frame.astype(np.float32)
 | |
|             motion_boxes = []
 | |
|             pct_motion = 0
 | |
| 
 | |
|         # once the motion is less than 5% and the number of contours is < 4, assume its calibrated
 | |
|         if pct_motion < 0.05 and len(motion_boxes) <= 4:
 | |
|             self.calibrating = False
 | |
| 
 | |
|         # if calibrating or the motion contours are > 80% of the image area (lightning, ir, ptz) recalibrate
 | |
|         if self.calibrating or pct_motion > self.config.lightning_threshold:
 | |
|             self.calibrating = True
 | |
| 
 | |
|         if self.save_images:
 | |
|             thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
 | |
|             for b in motion_boxes:
 | |
|                 cv2.rectangle(
 | |
|                     thresh_dilated,
 | |
|                     (int(b[0] / self.resize_factor), int(b[1] / self.resize_factor)),
 | |
|                     (int(b[2] / self.resize_factor), int(b[3] / self.resize_factor)),
 | |
|                     (0, 0, 255),
 | |
|                     2,
 | |
|                 )
 | |
|             frames = [
 | |
|                 cv2.cvtColor(resized_saved, cv2.COLOR_GRAY2BGR),
 | |
|                 cv2.cvtColor(contrasted_saved, cv2.COLOR_GRAY2BGR),
 | |
|                 cv2.cvtColor(blurred_saved, cv2.COLOR_GRAY2BGR),
 | |
|                 cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
 | |
|                 cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR),
 | |
|                 thresh_dilated,
 | |
|             ]
 | |
|             cv2.imwrite(
 | |
|                 f"debug/frames/{self.name}-{self.frame_counter}.jpg",
 | |
|                 (
 | |
|                     cv2.hconcat(frames)
 | |
|                     if self.frame_shape[0] > self.frame_shape[1]
 | |
|                     else cv2.vconcat(frames)
 | |
|                 ),
 | |
|             )
 | |
| 
 | |
|         if len(motion_boxes) > 0:
 | |
|             self.motion_frame_count += 1
 | |
|             if self.motion_frame_count >= 10:
 | |
|                 # only average in the current frame if the difference persists for a bit
 | |
|                 cv2.accumulateWeighted(
 | |
|                     resized_frame,
 | |
|                     self.avg_frame,
 | |
|                     0.2 if self.calibrating else self.config.frame_alpha,
 | |
|                 )
 | |
|         else:
 | |
|             # when no motion, just keep averaging the frames together
 | |
|             cv2.accumulateWeighted(
 | |
|                 resized_frame,
 | |
|                 self.avg_frame,
 | |
|                 0.2 if self.calibrating else self.config.frame_alpha,
 | |
|             )
 | |
|             self.motion_frame_count = 0
 | |
| 
 | |
|         return motion_boxes
 | |
| 
 | |
|     def stop(self) -> None:
 | |
|         """stop the motion detector."""
 | |
|         self.config_subscriber.stop()
 |