blakeblackshear.frigate/frigate/util/model.py
Nicolas Mowen 8b8df6d978 Formatting
2024-11-24 08:33:56 -07:00

245 lines
8.2 KiB
Python

"""Model Utils"""
import logging
import os
from typing import Any, Optional
import numpy as np
import onnxruntime as ort
from playhouse.sqliteq import SqliteQueueDatabase
from sklearn.preprocessing import LabelEncoder, Normalizer
from sklearn.svm import SVC
from frigate.config.semantic_search import FaceRecognitionConfig
from frigate.util.builtin import deserialize, serialize
try:
import openvino as ov
except ImportError:
# openvino is not included
pass
logger = logging.getLogger(__name__)
MIN_MATCHING_FACES = 2
def get_ort_providers(
force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False
) -> tuple[list[str], list[dict[str, any]]]:
if force_cpu:
return (
["CPUExecutionProvider"],
[
{
"enable_cpu_mem_arena": False,
}
],
)
providers = []
options = []
for provider in ort.get_available_providers():
if provider == "CUDAExecutionProvider":
device_id = 0 if not device.isdigit() else int(device)
providers.append(provider)
options.append(
{
"arena_extend_strategy": "kSameAsRequested",
"device_id": device_id,
}
)
elif provider == "TensorrtExecutionProvider":
# TensorrtExecutionProvider uses too much memory without options to control it
# so it is not enabled by default
if device == "Tensorrt":
os.makedirs(
"/config/model_cache/tensorrt/ort/trt-engines", exist_ok=True
)
device_id = 0 if not device.isdigit() else int(device)
providers.append(provider)
options.append(
{
"device_id": device_id,
"trt_fp16_enable": requires_fp16
and os.environ.get("USE_FP_16", "True") != "False",
"trt_timing_cache_enable": True,
"trt_engine_cache_enable": True,
"trt_timing_cache_path": "/config/model_cache/tensorrt/ort",
"trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines",
}
)
else:
continue
elif provider == "OpenVINOExecutionProvider":
os.makedirs("/config/model_cache/openvino/ort", exist_ok=True)
providers.append(provider)
options.append(
{
"arena_extend_strategy": "kSameAsRequested",
"cache_dir": "/config/model_cache/openvino/ort",
"device_type": device,
}
)
elif provider == "CPUExecutionProvider":
providers.append(provider)
options.append(
{
"enable_cpu_mem_arena": False,
}
)
else:
providers.append(provider)
options.append({})
return (providers, options)
class ONNXModelRunner:
"""Run onnx models optimally based on available hardware."""
def __init__(self, model_path: str, device: str, requires_fp16: bool = False):
self.model_path = model_path
self.ort: ort.InferenceSession = None
self.ov: ov.Core = None
providers, options = get_ort_providers(device == "CPU", device, requires_fp16)
self.interpreter = None
if "OpenVINOExecutionProvider" in providers:
try:
# use OpenVINO directly
self.type = "ov"
self.ov = ov.Core()
self.ov.set_property(
{ov.properties.cache_dir: "/config/model_cache/openvino"}
)
self.interpreter = self.ov.compile_model(
model=model_path, device_name=device
)
except Exception as e:
logger.warning(
f"OpenVINO failed to build model, using CPU instead: {e}"
)
self.interpreter = None
# Use ONNXRuntime
if self.interpreter is None:
self.type = "ort"
self.ort = ort.InferenceSession(
model_path,
providers=providers,
provider_options=options,
)
def get_input_names(self) -> list[str]:
if self.type == "ov":
input_names = []
for input in self.interpreter.inputs:
input_names.extend(input.names)
return input_names
elif self.type == "ort":
return [input.name for input in self.ort.get_inputs()]
def run(self, input: dict[str, Any]) -> Any:
if self.type == "ov":
infer_request = self.interpreter.create_infer_request()
input_tensor = list(input.values())
if len(input_tensor) == 1:
input_tensor = ov.Tensor(array=input_tensor[0])
else:
input_tensor = ov.Tensor(array=input_tensor)
infer_request.infer(input_tensor)
return [infer_request.get_output_tensor().data]
elif self.type == "ort":
return self.ort.run(None, input)
class FaceClassificationModel:
def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
self.config = config
self.db = db
self.labeler: Optional[LabelEncoder] = None
self.classifier: Optional[SVC] = None
self.embedding_query = f"""
SELECT
id,
distance
FROM vec_faces
WHERE face_embedding MATCH ?
AND k = {MIN_MATCHING_FACES} ORDER BY distance
"""
def __build_classifier(self) -> None:
faces: list[tuple[str, bytes]] = self.db.execute_sql(
"SELECT id, face_embedding FROM vec_faces"
).fetchall()
embeddings = np.array([deserialize(f[1]) for f in faces])
self.labeler = LabelEncoder()
norms = Normalizer(norm="l2").transform(embeddings)
labels = self.labeler.fit_transform([f[0].split("-")[0] for f in faces])
self.classifier = SVC(
kernel="linear", probability=True, decision_function_shape="ovo"
)
self.classifier.fit(norms, labels)
def clear_classifier(self) -> None:
self.classifier = None
self.labeler = None
def classify_face(self, embedding: np.ndarray) -> Optional[tuple[str, float]]:
best_faces = self.db.execute_sql(
self.embedding_query, [serialize(embedding)]
).fetchall()
logger.debug(f"Face embedding match: {best_faces}")
if not best_faces or len(best_faces) < MIN_MATCHING_FACES:
logger.debug(
f"{len(best_faces)} < {MIN_MATCHING_FACES} min required faces."
)
return None
sub_label = str(best_faces[0][0]).split("-")[0]
avg_score = 0
# check that the cosine similarity is close enough to match the face
for face in best_faces:
score = 1.0 - face[1]
if face[0].split("-")[0] != sub_label:
logger.debug("Detected multiple faces, result is not valid.")
return None
avg_score += score
avg_score = round(avg_score / MIN_MATCHING_FACES, 2)
if avg_score < self.config.threshold:
logger.debug(
f"Recognized face score {avg_score} is less than threshold ({self.config.threshold}))."
)
return None
if not self.classifier:
self.__build_classifier()
cosine_index = self.labeler.transform([sub_label])[0]
probabilities: np.ndarray = self.classifier.predict_proba([embedding])[0]
svc_probability = max(probabilities)
logger.debug(
f"SVC face classification probability: {svc_probability} and index match: {cosine_index} / {np.where(probabilities == svc_probability)[0]}"
)
if cosine_index == np.where(probabilities == svc_probability)[0]:
return (
sub_label,
min(avg_score, svc_probability),
)
return None