mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-08-22 13:47:29 +02:00
NVR with realtime local object detection for IP cameras
aicameragoogle-coralhome-assistanthome-automationhomeautomationmqttnvrobject-detectionrealtimertsptensorflow
* Rename existing function * Keep track of thumbnial updates * Tinkering with genai prompt * Adjust input format * Create model for review description output * testing prompt changes * Prompt improvements and image saving * Add config for review items genai * Use genai review config * Actual config usage * Adjust debug image saving * Fix * Fix review creation * Adjust prompt * Prompt adjustment * Run genai in thread * Fix detections block * Adjust prompt * Prompt changes * Save genai response to metadata model * Handle metadata * Send review update to dispatcher * Save review metadata to DB * Send review notification updates * Quick fix * Fix name * Fix update type * Correctly dump model * Add card * Add card * Remove message * Cleanup typing and UI * Adjust prompt * Formatting * Add log * Formatting * Add inference speed and keep alive |
||
---|---|---|
.cspell | ||
.devcontainer | ||
.github | ||
.vscode | ||
config | ||
docker | ||
docs | ||
frigate | ||
migrations | ||
notebooks | ||
web | ||
.dockerignore | ||
.gitignore | ||
.pylintrc | ||
audio-labelmap.txt | ||
benchmark_motion.py | ||
benchmark.py | ||
CODEOWNERS | ||
cspell.json | ||
docker-compose.yml | ||
labelmap.txt | ||
LICENSE | ||
Makefile | ||
netlify.toml | ||
package-lock.json | ||
process_clip.py | ||
pyproject.toml | ||
README_CN.md | ||
README.md |
Frigate - NVR With Realtime Object Detection for IP Cameras
English
A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a GPU or AI accelerator such as a Google Coral or Hailo is highly recommended. AI accelerators will outperform even the best CPUs with very little overhead.
- Tight integration with Home Assistant via a custom component
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- Records video with retention settings based on detected objects
- 24/7 recording
- Re-streaming via RTSP to reduce the number of connections to your camera
- WebRTC & MSE support for low-latency live view
Documentation
View the documentation at https://docs.frigate.video
Donations
If you would like to make a donation to support development, please use Github Sponsors.
Screenshots
Live dashboard
Streamlined review workflow
Multi-camera scrubbing
Built-in mask and zone editor
Translations
We use Weblate to support language translations. Contributions are always welcome.