mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-16 00:09:14 +01:00
2ea1d34f4f
* Error clarification for openvino's compile_model function * run ruff format --------- Co-authored-by: ubawurinna <you@example.com>
229 lines
8.8 KiB
Python
229 lines
8.8 KiB
Python
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
import openvino as ov
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "openvino"
|
|
|
|
|
|
class OvDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
device: str = Field(default=None, title="Device Type")
|
|
|
|
|
|
class OvDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
supported_models = [ModelTypeEnum.ssd, ModelTypeEnum.yolonas, ModelTypeEnum.yolox]
|
|
|
|
def __init__(self, detector_config: OvDetectorConfig):
|
|
self.ov_core = ov.Core()
|
|
self.ov_model_type = detector_config.model.model_type
|
|
|
|
self.h = detector_config.model.height
|
|
self.w = detector_config.model.width
|
|
|
|
if detector_config.device == "AUTO":
|
|
logger.warning(
|
|
"OpenVINO AUTO device type is not currently supported. Attempting to use GPU instead."
|
|
)
|
|
detector_config.device = "GPU"
|
|
|
|
if not os.path.isfile(detector_config.model.path):
|
|
logger.error(f"OpenVino model file {detector_config.model.path} not found.")
|
|
raise FileNotFoundError
|
|
|
|
self.interpreter = self.ov_core.compile_model(
|
|
model=detector_config.model.path, device_name=detector_config.device
|
|
)
|
|
|
|
self.model_invalid = False
|
|
|
|
if self.ov_model_type not in self.supported_models:
|
|
logger.error(
|
|
f"OpenVino detector does not support {self.ov_model_type} models."
|
|
)
|
|
self.model_invalid = True
|
|
|
|
# Ensure the SSD model has the right input and output shapes
|
|
if self.ov_model_type == ModelTypeEnum.ssd:
|
|
model_inputs = self.interpreter.inputs
|
|
model_outputs = self.interpreter.outputs
|
|
|
|
if len(model_inputs) != 1:
|
|
logger.error(
|
|
f"SSD models must only have 1 input. Found {len(model_inputs)}."
|
|
)
|
|
self.model_invalid = True
|
|
if len(model_outputs) != 1:
|
|
logger.error(
|
|
f"SSD models must only have 1 output. Found {len(model_outputs)}."
|
|
)
|
|
self.model_invalid = True
|
|
|
|
if model_inputs[0].get_shape() != ov.Shape([1, self.w, self.h, 3]):
|
|
logger.error(
|
|
f"SSD model input doesn't match. Found {model_inputs[0].get_shape()}."
|
|
)
|
|
self.model_invalid = True
|
|
|
|
output_shape = model_outputs[0].get_shape()
|
|
if output_shape[0] != 1 or output_shape[1] != 1 or output_shape[3] != 7:
|
|
logger.error(f"SSD model output doesn't match. Found {output_shape}.")
|
|
self.model_invalid = True
|
|
|
|
if self.ov_model_type == ModelTypeEnum.yolonas:
|
|
model_inputs = self.interpreter.inputs
|
|
model_outputs = self.interpreter.outputs
|
|
|
|
if len(model_inputs) != 1:
|
|
logger.error(
|
|
f"YoloNAS models must only have 1 input. Found {len(model_inputs)}."
|
|
)
|
|
self.model_invalid = True
|
|
if len(model_outputs) != 1:
|
|
logger.error(
|
|
f"YoloNAS models must be exported in flat format and only have 1 output. Found {len(model_outputs)}."
|
|
)
|
|
self.model_invalid = True
|
|
|
|
if model_inputs[0].get_shape() != ov.Shape([1, 3, self.w, self.h]):
|
|
logger.error(
|
|
f"YoloNAS model input doesn't match. Found {model_inputs[0].get_shape()}, but expected {[1, 3, self.w, self.h]}."
|
|
)
|
|
self.model_invalid = True
|
|
|
|
output_shape = model_outputs[0].partial_shape
|
|
if output_shape[-1] != 7:
|
|
logger.error(
|
|
f"YoloNAS models must be exported in flat format. Model output doesn't match. Found {output_shape}."
|
|
)
|
|
self.model_invalid = True
|
|
|
|
if self.ov_model_type == ModelTypeEnum.yolox:
|
|
self.output_indexes = 0
|
|
while True:
|
|
try:
|
|
tensor_shape = self.interpreter.output(self.output_indexes).shape
|
|
logger.info(
|
|
f"Model Output-{self.output_indexes} Shape: {tensor_shape}"
|
|
)
|
|
self.output_indexes += 1
|
|
except Exception:
|
|
logger.info(f"Model has {self.output_indexes} Output Tensors")
|
|
break
|
|
self.num_classes = tensor_shape[2] - 5
|
|
logger.info(f"YOLOX model has {self.num_classes} classes")
|
|
self.set_strides_grids()
|
|
|
|
def set_strides_grids(self):
|
|
grids = []
|
|
expanded_strides = []
|
|
|
|
strides = [8, 16, 32]
|
|
|
|
hsizes = [self.h // stride for stride in strides]
|
|
wsizes = [self.w // stride for stride in strides]
|
|
|
|
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
|
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
|
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
|
grids.append(grid)
|
|
shape = grid.shape[:2]
|
|
expanded_strides.append(np.full((*shape, 1), stride))
|
|
self.grids = np.concatenate(grids, 1)
|
|
self.expanded_strides = np.concatenate(expanded_strides, 1)
|
|
|
|
## Takes in class ID, confidence score, and array of [x, y, w, h] that describes detection position,
|
|
## returns an array that's easily passable back to Frigate.
|
|
def process_yolo(self, class_id, conf, pos):
|
|
return [
|
|
class_id, # class ID
|
|
conf, # confidence score
|
|
(pos[1] - (pos[3] / 2)) / self.h, # y_min
|
|
(pos[0] - (pos[2] / 2)) / self.w, # x_min
|
|
(pos[1] + (pos[3] / 2)) / self.h, # y_max
|
|
(pos[0] + (pos[2] / 2)) / self.w, # x_max
|
|
]
|
|
|
|
def detect_raw(self, tensor_input):
|
|
infer_request = self.interpreter.create_infer_request()
|
|
# TODO: see if we can use shared_memory=True
|
|
input_tensor = ov.Tensor(array=tensor_input)
|
|
infer_request.infer(input_tensor)
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
if self.model_invalid:
|
|
return detections
|
|
|
|
if self.ov_model_type == ModelTypeEnum.ssd:
|
|
results = infer_request.get_output_tensor(0).data[0][0]
|
|
|
|
for i, (_, class_id, score, xmin, ymin, xmax, ymax) in enumerate(results):
|
|
if i == 20:
|
|
break
|
|
detections[i] = [
|
|
class_id,
|
|
float(score),
|
|
ymin,
|
|
xmin,
|
|
ymax,
|
|
xmax,
|
|
]
|
|
return detections
|
|
|
|
if self.ov_model_type == ModelTypeEnum.yolonas:
|
|
predictions = infer_request.get_output_tensor(0).data
|
|
|
|
for i, prediction in enumerate(predictions):
|
|
if i == 20:
|
|
break
|
|
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
|
|
# when running in GPU mode, empty predictions in the output have class_id of -1
|
|
if class_id < 0:
|
|
break
|
|
detections[i] = [
|
|
class_id,
|
|
confidence,
|
|
y_min / self.h,
|
|
x_min / self.w,
|
|
y_max / self.h,
|
|
x_max / self.w,
|
|
]
|
|
return detections
|
|
|
|
if self.ov_model_type == ModelTypeEnum.yolox:
|
|
out_tensor = infer_request.get_output_tensor()
|
|
# [x, y, h, w, box_score, class_no_1, ..., class_no_80],
|
|
results = out_tensor.data
|
|
results[..., :2] = (results[..., :2] + self.grids) * self.expanded_strides
|
|
results[..., 2:4] = np.exp(results[..., 2:4]) * self.expanded_strides
|
|
image_pred = results[0, ...]
|
|
|
|
class_conf = np.max(
|
|
image_pred[:, 5 : 5 + self.num_classes], axis=1, keepdims=True
|
|
)
|
|
class_pred = np.argmax(image_pred[:, 5 : 5 + self.num_classes], axis=1)
|
|
class_pred = np.expand_dims(class_pred, axis=1)
|
|
|
|
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= 0.3).squeeze()
|
|
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
|
|
dets = np.concatenate((image_pred[:, :5], class_conf, class_pred), axis=1)
|
|
dets = dets[conf_mask]
|
|
|
|
ordered = dets[dets[:, 5].argsort()[::-1]][:20]
|
|
|
|
for i, object_detected in enumerate(ordered):
|
|
detections[i] = self.process_yolo(
|
|
object_detected[6], object_detected[5], object_detected[:4]
|
|
)
|
|
return detections
|