mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-29 00:06:19 +01:00
3d612e510c
Signed-off-by: alongdate <alongyear@outlook.com>
233 lines
7.1 KiB
Python
233 lines
7.1 KiB
Python
import datetime
|
|
import logging
|
|
import multiprocessing as mp
|
|
import os
|
|
import queue
|
|
import signal
|
|
import threading
|
|
from abc import ABC, abstractmethod
|
|
|
|
import numpy as np
|
|
from setproctitle import setproctitle
|
|
|
|
from frigate.detectors import create_detector
|
|
from frigate.detectors.detector_config import InputTensorEnum
|
|
from frigate.util.builtin import EventsPerSecond, load_labels
|
|
from frigate.util.image import SharedMemoryFrameManager
|
|
from frigate.util.services import listen
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ObjectDetector(ABC):
|
|
@abstractmethod
|
|
def detect(self, tensor_input, threshold=0.4):
|
|
pass
|
|
|
|
|
|
def tensor_transform(desired_shape):
|
|
# Currently this function only supports BHWC permutations
|
|
if desired_shape == InputTensorEnum.nhwc:
|
|
return None
|
|
elif desired_shape == InputTensorEnum.nchw:
|
|
return (0, 3, 1, 2)
|
|
|
|
|
|
class LocalObjectDetector(ObjectDetector):
|
|
def __init__(
|
|
self,
|
|
detector_config=None,
|
|
labels=None,
|
|
):
|
|
self.fps = EventsPerSecond()
|
|
if labels is None:
|
|
self.labels = {}
|
|
else:
|
|
self.labels = load_labels(labels)
|
|
|
|
if detector_config:
|
|
self.input_transform = tensor_transform(detector_config.model.input_tensor)
|
|
else:
|
|
self.input_transform = None
|
|
|
|
self.detect_api = create_detector(detector_config)
|
|
|
|
def detect(self, tensor_input, threshold=0.4):
|
|
detections = []
|
|
|
|
raw_detections = self.detect_raw(tensor_input)
|
|
|
|
for d in raw_detections:
|
|
if int(d[0]) < 0 or int(d[0]) >= len(self.labels):
|
|
logger.warning(f"Raw Detect returned invalid label: {d}")
|
|
continue
|
|
if d[1] < threshold:
|
|
break
|
|
detections.append(
|
|
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
|
)
|
|
self.fps.update()
|
|
return detections
|
|
|
|
def detect_raw(self, tensor_input):
|
|
if self.input_transform:
|
|
tensor_input = np.transpose(tensor_input, self.input_transform)
|
|
return self.detect_api.detect_raw(tensor_input=tensor_input)
|
|
|
|
|
|
def run_detector(
|
|
name: str,
|
|
detection_queue: mp.Queue,
|
|
out_events: dict[str, mp.Event],
|
|
avg_speed,
|
|
start,
|
|
detector_config,
|
|
):
|
|
threading.current_thread().name = f"detector:{name}"
|
|
logger = logging.getLogger(f"detector.{name}")
|
|
logger.info(f"Starting detection process: {os.getpid()}")
|
|
setproctitle(f"frigate.detector.{name}")
|
|
listen()
|
|
|
|
stop_event = mp.Event()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
logger.info("Signal to exit detection process...")
|
|
stop_event.set()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
frame_manager = SharedMemoryFrameManager()
|
|
object_detector = LocalObjectDetector(detector_config=detector_config)
|
|
|
|
outputs = {}
|
|
for name in out_events.keys():
|
|
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
|
|
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
|
|
outputs[name] = {"shm": out_shm, "np": out_np}
|
|
|
|
while not stop_event.is_set():
|
|
try:
|
|
connection_id = detection_queue.get(timeout=1)
|
|
except queue.Empty:
|
|
continue
|
|
input_frame = frame_manager.get(
|
|
connection_id,
|
|
(1, detector_config.model.height, detector_config.model.width, 3),
|
|
)
|
|
|
|
if input_frame is None:
|
|
continue
|
|
|
|
# detect and send the output
|
|
start.value = datetime.datetime.now().timestamp()
|
|
detections = object_detector.detect_raw(input_frame)
|
|
duration = datetime.datetime.now().timestamp() - start.value
|
|
outputs[connection_id]["np"][:] = detections[:]
|
|
out_events[connection_id].set()
|
|
start.value = 0.0
|
|
|
|
avg_speed.value = (avg_speed.value * 9 + duration) / 10
|
|
|
|
logger.info("Exited detection process...")
|
|
|
|
|
|
class ObjectDetectProcess:
|
|
def __init__(
|
|
self,
|
|
name,
|
|
detection_queue,
|
|
out_events,
|
|
detector_config,
|
|
):
|
|
self.name = name
|
|
self.out_events = out_events
|
|
self.detection_queue = detection_queue
|
|
self.avg_inference_speed = mp.Value("d", 0.01)
|
|
self.detection_start = mp.Value("d", 0.0)
|
|
self.detect_process = None
|
|
self.detector_config = detector_config
|
|
self.start_or_restart()
|
|
|
|
def stop(self):
|
|
# if the process has already exited on its own, just return
|
|
if self.detect_process and self.detect_process.exitcode:
|
|
return
|
|
self.detect_process.terminate()
|
|
logging.info("Waiting for detection process to exit gracefully...")
|
|
self.detect_process.join(timeout=30)
|
|
if self.detect_process.exitcode is None:
|
|
logging.info("Detection process didn't exit. Force killing...")
|
|
self.detect_process.kill()
|
|
self.detect_process.join()
|
|
logging.info("Detection process has exited...")
|
|
|
|
def start_or_restart(self):
|
|
self.detection_start.value = 0.0
|
|
if (self.detect_process is not None) and self.detect_process.is_alive():
|
|
self.stop()
|
|
self.detect_process = mp.Process(
|
|
target=run_detector,
|
|
name=f"detector:{self.name}",
|
|
args=(
|
|
self.name,
|
|
self.detection_queue,
|
|
self.out_events,
|
|
self.avg_inference_speed,
|
|
self.detection_start,
|
|
self.detector_config,
|
|
),
|
|
)
|
|
self.detect_process.daemon = True
|
|
self.detect_process.start()
|
|
|
|
|
|
class RemoteObjectDetector:
|
|
def __init__(self, name, labels, detection_queue, event, model_config, stop_event):
|
|
self.labels = labels
|
|
self.name = name
|
|
self.fps = EventsPerSecond()
|
|
self.detection_queue = detection_queue
|
|
self.event = event
|
|
self.stop_event = stop_event
|
|
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
|
|
self.np_shm = np.ndarray(
|
|
(1, model_config.height, model_config.width, 3),
|
|
dtype=np.uint8,
|
|
buffer=self.shm.buf,
|
|
)
|
|
self.out_shm = mp.shared_memory.SharedMemory(
|
|
name=f"out-{self.name}", create=False
|
|
)
|
|
self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
|
|
|
|
def detect(self, tensor_input, threshold=0.4):
|
|
detections = []
|
|
|
|
if self.stop_event.is_set():
|
|
return detections
|
|
|
|
# copy input to shared memory
|
|
self.np_shm[:] = tensor_input[:]
|
|
self.event.clear()
|
|
self.detection_queue.put(self.name)
|
|
result = self.event.wait(timeout=5.0)
|
|
|
|
# if it timed out
|
|
if result is None:
|
|
return detections
|
|
|
|
for d in self.out_np_shm:
|
|
if d[1] < threshold:
|
|
break
|
|
detections.append(
|
|
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
|
)
|
|
self.fps.update()
|
|
return detections
|
|
|
|
def cleanup(self):
|
|
self.shm.unlink()
|
|
self.out_shm.unlink()
|