blakeblackshear.frigate/frigate/embeddings/__init__.py
Josh Hawkins d4925622f9
Use JinaAI models for embeddings (#14252)
* add generic onnx model class and use jina ai clip models for all embeddings

* fix merge confligt

* add generic onnx model class and use jina ai clip models for all embeddings

* fix merge confligt

* preferred providers

* fix paths

* disable download progress bar

* remove logging of path

* drop and recreate tables on reindex

* use cache paths

* fix model name

* use trust remote code per transformers docs

* ensure tokenizer and feature extractor are correctly loaded

* revert

* manually download and cache feature extractor config

* remove unneeded

* remove old clip and minilm code

* docs update
2024-10-09 15:31:54 -06:00

95 lines
2.7 KiB
Python

"""SQLite-vec embeddings database."""
import json
import logging
import multiprocessing as mp
import os
import signal
import threading
from types import FrameType
from typing import Optional
from setproctitle import setproctitle
from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.models import Event
from frigate.util.services import listen
from .embeddings import Embeddings
from .maintainer import EmbeddingMaintainer
from .util import ZScoreNormalization
logger = logging.getLogger(__name__)
def manage_embeddings(config: FrigateConfig) -> None:
# Only initialize embeddings if semantic search is enabled
if not config.semantic_search.enabled:
return
stop_event = mp.Event()
def receiveSignal(signalNumber: int, frame: Optional[FrameType]) -> None:
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = "process:embeddings_manager"
setproctitle("frigate.embeddings_manager")
listen()
# Configure Frigate DB
db = SqliteVecQueueDatabase(
config.database.path,
pragmas={
"auto_vacuum": "FULL", # Does not defragment database
"cache_size": -512 * 1000, # 512MB of cache
"synchronous": "NORMAL", # Safe when using WAL https://www.sqlite.org/pragma.html#pragma_synchronous
},
timeout=max(60, 10 * len([c for c in config.cameras.values() if c.enabled])),
load_vec_extension=True,
)
models = [Event]
db.bind(models)
embeddings = Embeddings(db)
# Check if we need to re-index events
if config.semantic_search.reindex:
embeddings.reindex()
maintainer = EmbeddingMaintainer(
db,
config,
stop_event,
)
maintainer.start()
class EmbeddingsContext:
def __init__(self, db: SqliteVecQueueDatabase):
self.embeddings = Embeddings(db)
self.thumb_stats = ZScoreNormalization()
self.desc_stats = ZScoreNormalization()
# load stats from disk
try:
with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "r") as f:
data = json.loads(f.read())
self.thumb_stats.from_dict(data["thumb_stats"])
self.desc_stats.from_dict(data["desc_stats"])
except FileNotFoundError:
pass
def save_stats(self):
"""Write the stats to disk as JSON on exit."""
contents = {
"thumb_stats": self.thumb_stats.to_dict(),
"desc_stats": self.desc_stats.to_dict(),
}
with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "w") as f:
json.dump(contents, f)