blakeblackshear.frigate/frigate/embeddings/embeddings.py
Josh Hawkins d4925622f9
Use JinaAI models for embeddings (#14252)
* add generic onnx model class and use jina ai clip models for all embeddings

* fix merge confligt

* add generic onnx model class and use jina ai clip models for all embeddings

* fix merge confligt

* preferred providers

* fix paths

* disable download progress bar

* remove logging of path

* drop and recreate tables on reindex

* use cache paths

* fix model name

* use trust remote code per transformers docs

* ensure tokenizer and feature extractor are correctly loaded

* revert

* manually download and cache feature extractor config

* remove unneeded

* remove old clip and minilm code

* docs update
2024-10-09 15:31:54 -06:00

340 lines
11 KiB
Python

"""SQLite-vec embeddings database."""
import base64
import io
import logging
import struct
import time
from typing import List, Tuple, Union
import numpy as np
from PIL import Image
from playhouse.shortcuts import model_to_dict
from frigate.comms.inter_process import InterProcessRequestor
from frigate.const import UPDATE_MODEL_STATE
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.models import Event
from frigate.types import ModelStatusTypesEnum
from .functions.onnx import GenericONNXEmbedding
logger = logging.getLogger(__name__)
def get_metadata(event: Event) -> dict:
"""Extract valid event metadata."""
event_dict = model_to_dict(event)
return (
{
k: v
for k, v in event_dict.items()
if k not in ["thumbnail"]
and v is not None
and isinstance(v, (str, int, float, bool))
}
| {
k: v
for k, v in event_dict["data"].items()
if k not in ["description"]
and v is not None
and isinstance(v, (str, int, float, bool))
}
| {
# Metadata search doesn't support $contains
# and an event can have multiple zones, so
# we need to create a key for each zone
f"{k}_{x}": True
for k, v in event_dict.items()
if isinstance(v, list) and len(v) > 0
for x in v
if isinstance(x, str)
}
)
def serialize(vector: Union[List[float], np.ndarray, float]) -> bytes:
"""Serializes a list of floats, numpy array, or single float into a compact "raw bytes" format"""
if isinstance(vector, np.ndarray):
# Convert numpy array to list of floats
vector = vector.flatten().tolist()
elif isinstance(vector, (float, np.float32, np.float64)):
# Handle single float values
vector = [vector]
elif not isinstance(vector, list):
raise TypeError(
f"Input must be a list of floats, a numpy array, or a single float. Got {type(vector)}"
)
try:
return struct.pack("%sf" % len(vector), *vector)
except struct.error as e:
raise ValueError(f"Failed to pack vector: {e}. Vector: {vector}")
def deserialize(bytes_data: bytes) -> List[float]:
"""Deserializes a compact "raw bytes" format into a list of floats"""
return list(struct.unpack("%sf" % (len(bytes_data) // 4), bytes_data))
class Embeddings:
"""SQLite-vec embeddings database."""
def __init__(self, db: SqliteVecQueueDatabase) -> None:
self.db = db
self.requestor = InterProcessRequestor()
# Create tables if they don't exist
self._create_tables()
models = [
"jinaai/jina-clip-v1-text_model_fp16.onnx",
"jinaai/jina-clip-v1-tokenizer",
"jinaai/jina-clip-v1-vision_model_fp16.onnx",
"jinaai/jina-clip-v1-preprocessor_config.json",
]
for model in models:
self.requestor.send_data(
UPDATE_MODEL_STATE,
{
"model": model,
"state": ModelStatusTypesEnum.not_downloaded,
},
)
def jina_text_embedding_function(outputs):
return outputs[0]
def jina_vision_embedding_function(outputs):
return outputs[0]
self.text_embedding = GenericONNXEmbedding(
model_name="jinaai/jina-clip-v1",
model_file="text_model_fp16.onnx",
tokenizer_file="tokenizer",
download_urls={
"text_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/text_model_fp16.onnx",
},
embedding_function=jina_text_embedding_function,
model_type="text",
preferred_providers=["CPUExecutionProvider"],
)
self.vision_embedding = GenericONNXEmbedding(
model_name="jinaai/jina-clip-v1",
model_file="vision_model_fp16.onnx",
download_urls={
"vision_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/vision_model_fp16.onnx",
"preprocessor_config.json": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/preprocessor_config.json",
},
embedding_function=jina_vision_embedding_function,
model_type="vision",
preferred_providers=["CPUExecutionProvider"],
)
def _create_tables(self):
# Create vec0 virtual table for thumbnail embeddings
self.db.execute_sql("""
CREATE VIRTUAL TABLE IF NOT EXISTS vec_thumbnails USING vec0(
id TEXT PRIMARY KEY,
thumbnail_embedding FLOAT[768]
);
""")
# Create vec0 virtual table for description embeddings
self.db.execute_sql("""
CREATE VIRTUAL TABLE IF NOT EXISTS vec_descriptions USING vec0(
id TEXT PRIMARY KEY,
description_embedding FLOAT[768]
);
""")
def _drop_tables(self):
self.db.execute_sql("""
DROP TABLE vec_descriptions;
""")
self.db.execute_sql("""
DROP TABLE vec_thumbnails;
""")
def upsert_thumbnail(self, event_id: str, thumbnail: bytes):
# Convert thumbnail bytes to PIL Image
image = Image.open(io.BytesIO(thumbnail)).convert("RGB")
embedding = self.vision_embedding([image])[0]
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
VALUES(?, ?)
""",
(event_id, serialize(embedding)),
)
return embedding
def upsert_description(self, event_id: str, description: str):
embedding = self.text_embedding([description])[0]
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
VALUES(?, ?)
""",
(event_id, serialize(embedding)),
)
return embedding
def delete_thumbnail(self, event_ids: List[str]) -> None:
ids = ",".join(["?" for _ in event_ids])
self.db.execute_sql(
f"DELETE FROM vec_thumbnails WHERE id IN ({ids})", event_ids
)
def delete_description(self, event_ids: List[str]) -> None:
ids = ",".join(["?" for _ in event_ids])
self.db.execute_sql(
f"DELETE FROM vec_descriptions WHERE id IN ({ids})", event_ids
)
def search_thumbnail(
self, query: Union[Event, str], event_ids: List[str] = None
) -> List[Tuple[str, float]]:
if query.__class__ == Event:
cursor = self.db.execute_sql(
"""
SELECT thumbnail_embedding FROM vec_thumbnails WHERE id = ?
""",
[query.id],
)
row = cursor.fetchone() if cursor else None
if row:
query_embedding = deserialize(
row[0]
) # Deserialize the thumbnail embedding
else:
# If no embedding found, generate it and return it
thumbnail = base64.b64decode(query.thumbnail)
query_embedding = self.upsert_thumbnail(query.id, thumbnail)
else:
query_embedding = self.text_embedding([query])[0]
sql_query = """
SELECT
id,
distance
FROM vec_thumbnails
WHERE thumbnail_embedding MATCH ?
AND k = 100
"""
# Add the IN clause if event_ids is provided and not empty
# this is the only filter supported by sqlite-vec as of 0.1.3
# but it seems to be broken in this version
if event_ids:
sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids)))
# order by distance DESC is not implemented in this version of sqlite-vec
# when it's implemented, we can use cosine similarity
sql_query += " ORDER BY distance"
parameters = (
[serialize(query_embedding)] + event_ids
if event_ids
else [serialize(query_embedding)]
)
results = self.db.execute_sql(sql_query, parameters).fetchall()
return results
def search_description(
self, query_text: str, event_ids: List[str] = None
) -> List[Tuple[str, float]]:
query_embedding = self.text_embedding([query_text])[0]
# Prepare the base SQL query
sql_query = """
SELECT
id,
distance
FROM vec_descriptions
WHERE description_embedding MATCH ?
AND k = 100
"""
# Add the IN clause if event_ids is provided and not empty
# this is the only filter supported by sqlite-vec as of 0.1.3
# but it seems to be broken in this version
if event_ids:
sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids)))
# order by distance DESC is not implemented in this version of sqlite-vec
# when it's implemented, we can use cosine similarity
sql_query += " ORDER BY distance"
parameters = (
[serialize(query_embedding)] + event_ids
if event_ids
else [serialize(query_embedding)]
)
results = self.db.execute_sql(sql_query, parameters).fetchall()
return results
def reindex(self) -> None:
logger.info("Indexing event embeddings...")
self._drop_tables()
self._create_tables()
st = time.time()
totals = {
"thumb": 0,
"desc": 0,
}
batch_size = 100
current_page = 1
events = (
Event.select()
.where(
(Event.has_clip == True | Event.has_snapshot == True)
& Event.thumbnail.is_null(False)
)
.order_by(Event.start_time.desc())
.paginate(current_page, batch_size)
)
while len(events) > 0:
event: Event
for event in events:
thumbnail = base64.b64decode(event.thumbnail)
self.upsert_thumbnail(event.id, thumbnail)
totals["thumb"] += 1
if description := event.data.get("description", "").strip():
totals["desc"] += 1
self.upsert_description(event.id, description)
current_page += 1
events = (
Event.select()
.where(
(Event.has_clip == True | Event.has_snapshot == True)
& Event.thumbnail.is_null(False)
)
.order_by(Event.start_time.desc())
.paginate(current_page, batch_size)
)
logger.info(
"Embedded %d thumbnails and %d descriptions in %s seconds",
totals["thumb"],
totals["desc"],
time.time() - st,
)