mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-21 00:06:44 +01:00
89dd114da1
* Store recording segments with timezone info * Don't use _ * Use different separator due to timezone
829 lines
28 KiB
Python
Executable File
829 lines
28 KiB
Python
Executable File
import datetime
|
|
import logging
|
|
import multiprocessing as mp
|
|
import os
|
|
import queue
|
|
import signal
|
|
import subprocess as sp
|
|
import threading
|
|
import time
|
|
|
|
import cv2
|
|
from setproctitle import setproctitle
|
|
|
|
from frigate.config import CameraConfig, DetectConfig, ModelConfig
|
|
from frigate.const import (
|
|
ALL_ATTRIBUTE_LABELS,
|
|
ATTRIBUTE_LABEL_MAP,
|
|
CACHE_DIR,
|
|
CACHE_SEGMENT_FORMAT,
|
|
REQUEST_REGION_GRID,
|
|
)
|
|
from frigate.log import LogPipe
|
|
from frigate.motion import MotionDetector
|
|
from frigate.motion.improved_motion import ImprovedMotionDetector
|
|
from frigate.object_detection import RemoteObjectDetector
|
|
from frigate.ptz.autotrack import ptz_moving_at_frame_time
|
|
from frigate.track import ObjectTracker
|
|
from frigate.track.norfair_tracker import NorfairTracker
|
|
from frigate.types import PTZMetricsTypes
|
|
from frigate.util.builtin import EventsPerSecond, get_tomorrow_at_time
|
|
from frigate.util.image import (
|
|
FrameManager,
|
|
SharedMemoryFrameManager,
|
|
draw_box_with_label,
|
|
)
|
|
from frigate.util.object import (
|
|
box_inside,
|
|
create_tensor_input,
|
|
get_cluster_candidates,
|
|
get_cluster_region,
|
|
get_cluster_region_from_grid,
|
|
get_min_region_size,
|
|
get_startup_regions,
|
|
inside_any,
|
|
intersects_any,
|
|
is_object_filtered,
|
|
reduce_detections,
|
|
)
|
|
from frigate.util.services import listen
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def stop_ffmpeg(ffmpeg_process, logger):
|
|
logger.info("Terminating the existing ffmpeg process...")
|
|
ffmpeg_process.terminate()
|
|
try:
|
|
logger.info("Waiting for ffmpeg to exit gracefully...")
|
|
ffmpeg_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
logger.info("FFmpeg didnt exit. Force killing...")
|
|
ffmpeg_process.kill()
|
|
ffmpeg_process.communicate()
|
|
ffmpeg_process = None
|
|
|
|
|
|
def start_or_restart_ffmpeg(
|
|
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
|
|
):
|
|
if ffmpeg_process is not None:
|
|
stop_ffmpeg(ffmpeg_process, logger)
|
|
|
|
if frame_size is None:
|
|
process = sp.Popen(
|
|
ffmpeg_cmd,
|
|
stdout=sp.DEVNULL,
|
|
stderr=logpipe,
|
|
stdin=sp.DEVNULL,
|
|
start_new_session=True,
|
|
)
|
|
else:
|
|
process = sp.Popen(
|
|
ffmpeg_cmd,
|
|
stdout=sp.PIPE,
|
|
stderr=logpipe,
|
|
stdin=sp.DEVNULL,
|
|
bufsize=frame_size * 10,
|
|
start_new_session=True,
|
|
)
|
|
return process
|
|
|
|
|
|
def capture_frames(
|
|
ffmpeg_process,
|
|
camera_name,
|
|
frame_shape,
|
|
frame_manager: FrameManager,
|
|
frame_queue,
|
|
fps: mp.Value,
|
|
skipped_fps: mp.Value,
|
|
current_frame: mp.Value,
|
|
stop_event: mp.Event,
|
|
):
|
|
frame_size = frame_shape[0] * frame_shape[1]
|
|
frame_rate = EventsPerSecond()
|
|
frame_rate.start()
|
|
skipped_eps = EventsPerSecond()
|
|
skipped_eps.start()
|
|
while True:
|
|
fps.value = frame_rate.eps()
|
|
skipped_fps.value = skipped_eps.eps()
|
|
|
|
current_frame.value = datetime.datetime.now().timestamp()
|
|
frame_name = f"{camera_name}{current_frame.value}"
|
|
frame_buffer = frame_manager.create(frame_name, frame_size)
|
|
try:
|
|
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
|
|
except Exception:
|
|
# shutdown has been initiated
|
|
if stop_event.is_set():
|
|
break
|
|
logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.")
|
|
|
|
if ffmpeg_process.poll() is not None:
|
|
logger.error(
|
|
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
|
|
)
|
|
frame_manager.delete(frame_name)
|
|
break
|
|
continue
|
|
|
|
frame_rate.update()
|
|
|
|
# don't lock the queue to check, just try since it should rarely be full
|
|
try:
|
|
# add to the queue
|
|
frame_queue.put(current_frame.value, False)
|
|
# close the frame
|
|
frame_manager.close(frame_name)
|
|
except queue.Full:
|
|
# if the queue is full, skip this frame
|
|
skipped_eps.update()
|
|
frame_manager.delete(frame_name)
|
|
|
|
|
|
class CameraWatchdog(threading.Thread):
|
|
def __init__(
|
|
self,
|
|
camera_name,
|
|
config: CameraConfig,
|
|
frame_queue,
|
|
camera_fps,
|
|
skipped_fps,
|
|
ffmpeg_pid,
|
|
stop_event,
|
|
):
|
|
threading.Thread.__init__(self)
|
|
self.logger = logging.getLogger(f"watchdog.{camera_name}")
|
|
self.camera_name = camera_name
|
|
self.config = config
|
|
self.capture_thread = None
|
|
self.ffmpeg_detect_process = None
|
|
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect")
|
|
self.ffmpeg_other_processes: list[dict[str, any]] = []
|
|
self.camera_fps = camera_fps
|
|
self.skipped_fps = skipped_fps
|
|
self.ffmpeg_pid = ffmpeg_pid
|
|
self.frame_queue = frame_queue
|
|
self.frame_shape = self.config.frame_shape_yuv
|
|
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
|
|
self.stop_event = stop_event
|
|
self.sleeptime = self.config.ffmpeg.retry_interval
|
|
|
|
def run(self):
|
|
self.start_ffmpeg_detect()
|
|
|
|
for c in self.config.ffmpeg_cmds:
|
|
if "detect" in c["roles"]:
|
|
continue
|
|
logpipe = LogPipe(
|
|
f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}"
|
|
)
|
|
self.ffmpeg_other_processes.append(
|
|
{
|
|
"cmd": c["cmd"],
|
|
"roles": c["roles"],
|
|
"logpipe": logpipe,
|
|
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
|
|
}
|
|
)
|
|
|
|
time.sleep(self.sleeptime)
|
|
while not self.stop_event.wait(self.sleeptime):
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
if not self.capture_thread.is_alive():
|
|
self.camera_fps.value = 0
|
|
self.logger.error(
|
|
f"Ffmpeg process crashed unexpectedly for {self.camera_name}."
|
|
)
|
|
self.logger.error(
|
|
"The following ffmpeg logs include the last 100 lines prior to exit."
|
|
)
|
|
self.logpipe.dump()
|
|
self.start_ffmpeg_detect()
|
|
elif now - self.capture_thread.current_frame.value > 20:
|
|
self.camera_fps.value = 0
|
|
self.logger.info(
|
|
f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..."
|
|
)
|
|
self.ffmpeg_detect_process.terminate()
|
|
try:
|
|
self.logger.info("Waiting for ffmpeg to exit gracefully...")
|
|
self.ffmpeg_detect_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
self.logger.info("FFmpeg did not exit. Force killing...")
|
|
self.ffmpeg_detect_process.kill()
|
|
self.ffmpeg_detect_process.communicate()
|
|
elif self.camera_fps.value >= (self.config.detect.fps + 10):
|
|
self.camera_fps.value = 0
|
|
self.logger.info(
|
|
f"{self.camera_name} exceeded fps limit. Exiting ffmpeg..."
|
|
)
|
|
self.ffmpeg_detect_process.terminate()
|
|
try:
|
|
self.logger.info("Waiting for ffmpeg to exit gracefully...")
|
|
self.ffmpeg_detect_process.communicate(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
self.logger.info("FFmpeg did not exit. Force killing...")
|
|
self.ffmpeg_detect_process.kill()
|
|
self.ffmpeg_detect_process.communicate()
|
|
|
|
for p in self.ffmpeg_other_processes:
|
|
poll = p["process"].poll()
|
|
|
|
if self.config.record.enabled and "record" in p["roles"]:
|
|
latest_segment_time = self.get_latest_segment_datetime(
|
|
p.get(
|
|
"latest_segment_time",
|
|
datetime.datetime.now().astimezone(datetime.timezone.utc),
|
|
)
|
|
)
|
|
|
|
if datetime.datetime.now().astimezone(datetime.timezone.utc) > (
|
|
latest_segment_time + datetime.timedelta(seconds=120)
|
|
):
|
|
self.logger.error(
|
|
f"No new recording segments were created for {self.camera_name} in the last 120s. restarting the ffmpeg record process..."
|
|
)
|
|
p["process"] = start_or_restart_ffmpeg(
|
|
p["cmd"],
|
|
self.logger,
|
|
p["logpipe"],
|
|
ffmpeg_process=p["process"],
|
|
)
|
|
continue
|
|
else:
|
|
p["latest_segment_time"] = latest_segment_time
|
|
|
|
if poll is None:
|
|
continue
|
|
|
|
p["logpipe"].dump()
|
|
p["process"] = start_or_restart_ffmpeg(
|
|
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
|
|
)
|
|
|
|
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
|
|
for p in self.ffmpeg_other_processes:
|
|
stop_ffmpeg(p["process"], self.logger)
|
|
p["logpipe"].close()
|
|
self.logpipe.close()
|
|
|
|
def start_ffmpeg_detect(self):
|
|
ffmpeg_cmd = [
|
|
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
|
|
][0]
|
|
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
|
|
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
|
|
)
|
|
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
|
|
self.capture_thread = CameraCapture(
|
|
self.camera_name,
|
|
self.ffmpeg_detect_process,
|
|
self.frame_shape,
|
|
self.frame_queue,
|
|
self.camera_fps,
|
|
self.skipped_fps,
|
|
self.stop_event,
|
|
)
|
|
self.capture_thread.start()
|
|
|
|
def get_latest_segment_datetime(self, latest_segment: datetime.datetime) -> int:
|
|
"""Checks if ffmpeg is still writing recording segments to cache."""
|
|
cache_files = sorted(
|
|
[
|
|
d
|
|
for d in os.listdir(CACHE_DIR)
|
|
if os.path.isfile(os.path.join(CACHE_DIR, d))
|
|
and d.endswith(".mp4")
|
|
and not d.startswith("clip_")
|
|
]
|
|
)
|
|
newest_segment_time = latest_segment
|
|
|
|
for file in cache_files:
|
|
if self.camera_name in file:
|
|
basename = os.path.splitext(file)[0]
|
|
_, date = basename.rsplit("@", maxsplit=1)
|
|
segment_time = datetime.datetime.strptime(
|
|
date, CACHE_SEGMENT_FORMAT
|
|
).astimezone(datetime.timezone.utc)
|
|
if segment_time > newest_segment_time:
|
|
newest_segment_time = segment_time
|
|
|
|
return newest_segment_time
|
|
|
|
|
|
class CameraCapture(threading.Thread):
|
|
def __init__(
|
|
self,
|
|
camera_name,
|
|
ffmpeg_process,
|
|
frame_shape,
|
|
frame_queue,
|
|
fps,
|
|
skipped_fps,
|
|
stop_event,
|
|
):
|
|
threading.Thread.__init__(self)
|
|
self.name = f"capture:{camera_name}"
|
|
self.camera_name = camera_name
|
|
self.frame_shape = frame_shape
|
|
self.frame_queue = frame_queue
|
|
self.fps = fps
|
|
self.stop_event = stop_event
|
|
self.skipped_fps = skipped_fps
|
|
self.frame_manager = SharedMemoryFrameManager()
|
|
self.ffmpeg_process = ffmpeg_process
|
|
self.current_frame = mp.Value("d", 0.0)
|
|
self.last_frame = 0
|
|
|
|
def run(self):
|
|
capture_frames(
|
|
self.ffmpeg_process,
|
|
self.camera_name,
|
|
self.frame_shape,
|
|
self.frame_manager,
|
|
self.frame_queue,
|
|
self.fps,
|
|
self.skipped_fps,
|
|
self.current_frame,
|
|
self.stop_event,
|
|
)
|
|
|
|
|
|
def capture_camera(name, config: CameraConfig, process_info):
|
|
stop_event = mp.Event()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
stop_event.set()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
threading.current_thread().name = f"capture:{name}"
|
|
setproctitle(f"frigate.capture:{name}")
|
|
|
|
frame_queue = process_info["frame_queue"]
|
|
camera_watchdog = CameraWatchdog(
|
|
name,
|
|
config,
|
|
frame_queue,
|
|
process_info["camera_fps"],
|
|
process_info["skipped_fps"],
|
|
process_info["ffmpeg_pid"],
|
|
stop_event,
|
|
)
|
|
camera_watchdog.start()
|
|
camera_watchdog.join()
|
|
|
|
|
|
def track_camera(
|
|
name,
|
|
config: CameraConfig,
|
|
model_config,
|
|
labelmap,
|
|
detection_queue,
|
|
result_connection,
|
|
detected_objects_queue,
|
|
inter_process_queue,
|
|
process_info,
|
|
ptz_metrics,
|
|
region_grid,
|
|
):
|
|
stop_event = mp.Event()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
stop_event.set()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
threading.current_thread().name = f"process:{name}"
|
|
setproctitle(f"frigate.process:{name}")
|
|
listen()
|
|
|
|
frame_queue = process_info["frame_queue"]
|
|
region_grid_queue = process_info["region_grid_queue"]
|
|
detection_enabled = process_info["detection_enabled"]
|
|
motion_enabled = process_info["motion_enabled"]
|
|
improve_contrast_enabled = process_info["improve_contrast_enabled"]
|
|
motion_threshold = process_info["motion_threshold"]
|
|
motion_contour_area = process_info["motion_contour_area"]
|
|
|
|
frame_shape = config.frame_shape
|
|
objects_to_track = config.objects.track
|
|
object_filters = config.objects.filters
|
|
|
|
motion_detector = ImprovedMotionDetector(
|
|
frame_shape,
|
|
config.motion,
|
|
config.detect.fps,
|
|
improve_contrast_enabled,
|
|
motion_threshold,
|
|
motion_contour_area,
|
|
)
|
|
object_detector = RemoteObjectDetector(
|
|
name, labelmap, detection_queue, result_connection, model_config, stop_event
|
|
)
|
|
|
|
object_tracker = NorfairTracker(config, ptz_metrics)
|
|
|
|
frame_manager = SharedMemoryFrameManager()
|
|
|
|
process_frames(
|
|
name,
|
|
inter_process_queue,
|
|
frame_queue,
|
|
region_grid_queue,
|
|
frame_shape,
|
|
model_config,
|
|
config.detect,
|
|
frame_manager,
|
|
motion_detector,
|
|
object_detector,
|
|
object_tracker,
|
|
detected_objects_queue,
|
|
process_info,
|
|
objects_to_track,
|
|
object_filters,
|
|
detection_enabled,
|
|
motion_enabled,
|
|
stop_event,
|
|
ptz_metrics,
|
|
region_grid,
|
|
)
|
|
|
|
logger.info(f"{name}: exiting subprocess")
|
|
|
|
|
|
def detect(
|
|
detect_config: DetectConfig,
|
|
object_detector,
|
|
frame,
|
|
model_config,
|
|
region,
|
|
objects_to_track,
|
|
object_filters,
|
|
):
|
|
tensor_input = create_tensor_input(frame, model_config, region)
|
|
|
|
detections = []
|
|
region_detections = object_detector.detect(tensor_input)
|
|
for d in region_detections:
|
|
box = d[2]
|
|
size = region[2] - region[0]
|
|
x_min = int(max(0, (box[1] * size) + region[0]))
|
|
y_min = int(max(0, (box[0] * size) + region[1]))
|
|
x_max = int(min(detect_config.width - 1, (box[3] * size) + region[0]))
|
|
y_max = int(min(detect_config.height - 1, (box[2] * size) + region[1]))
|
|
|
|
# ignore objects that were detected outside the frame
|
|
if (x_min >= detect_config.width - 1) or (y_min >= detect_config.height - 1):
|
|
continue
|
|
|
|
width = x_max - x_min
|
|
height = y_max - y_min
|
|
area = width * height
|
|
ratio = width / max(1, height)
|
|
det = (
|
|
d[0],
|
|
d[1],
|
|
(x_min, y_min, x_max, y_max),
|
|
area,
|
|
ratio,
|
|
region,
|
|
)
|
|
# apply object filters
|
|
if is_object_filtered(det, objects_to_track, object_filters):
|
|
continue
|
|
detections.append(det)
|
|
return detections
|
|
|
|
|
|
def process_frames(
|
|
camera_name: str,
|
|
inter_process_queue: mp.Queue,
|
|
frame_queue: mp.Queue,
|
|
region_grid_queue: mp.Queue,
|
|
frame_shape,
|
|
model_config: ModelConfig,
|
|
detect_config: DetectConfig,
|
|
frame_manager: FrameManager,
|
|
motion_detector: MotionDetector,
|
|
object_detector: RemoteObjectDetector,
|
|
object_tracker: ObjectTracker,
|
|
detected_objects_queue: mp.Queue,
|
|
process_info: dict,
|
|
objects_to_track: list[str],
|
|
object_filters,
|
|
detection_enabled: mp.Value,
|
|
motion_enabled: mp.Value,
|
|
stop_event,
|
|
ptz_metrics: PTZMetricsTypes,
|
|
region_grid,
|
|
exit_on_empty: bool = False,
|
|
):
|
|
fps = process_info["process_fps"]
|
|
detection_fps = process_info["detection_fps"]
|
|
current_frame_time = process_info["detection_frame"]
|
|
next_region_update = get_tomorrow_at_time(2)
|
|
|
|
fps_tracker = EventsPerSecond()
|
|
fps_tracker.start()
|
|
|
|
startup_scan = True
|
|
stationary_frame_counter = 0
|
|
|
|
region_min_size = get_min_region_size(model_config)
|
|
|
|
while not stop_event.is_set():
|
|
if (
|
|
datetime.datetime.now().astimezone(datetime.timezone.utc)
|
|
> next_region_update
|
|
):
|
|
inter_process_queue.put((REQUEST_REGION_GRID, camera_name))
|
|
|
|
try:
|
|
region_grid = region_grid_queue.get(True, 10)
|
|
except queue.Empty:
|
|
logger.error(f"Unable to get updated region grid for {camera_name}")
|
|
|
|
next_region_update = get_tomorrow_at_time(2)
|
|
|
|
try:
|
|
if exit_on_empty:
|
|
frame_time = frame_queue.get(False)
|
|
else:
|
|
frame_time = frame_queue.get(True, 1)
|
|
except queue.Empty:
|
|
if exit_on_empty:
|
|
logger.info("Exiting track_objects...")
|
|
break
|
|
continue
|
|
|
|
current_frame_time.value = frame_time
|
|
ptz_metrics["ptz_frame_time"].value = frame_time
|
|
|
|
frame = frame_manager.get(
|
|
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
|
|
)
|
|
|
|
if frame is None:
|
|
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
|
|
continue
|
|
|
|
# look for motion if enabled
|
|
motion_boxes = motion_detector.detect(frame) if motion_enabled.value else []
|
|
|
|
regions = []
|
|
consolidated_detections = []
|
|
|
|
# if detection is disabled
|
|
if not detection_enabled.value:
|
|
object_tracker.match_and_update(frame_time, [])
|
|
else:
|
|
# get stationary object ids
|
|
# check every Nth frame for stationary objects
|
|
# disappeared objects are not stationary
|
|
# also check for overlapping motion boxes
|
|
if stationary_frame_counter == detect_config.stationary.interval:
|
|
stationary_frame_counter = 0
|
|
stationary_object_ids = []
|
|
else:
|
|
stationary_frame_counter += 1
|
|
stationary_object_ids = [
|
|
obj["id"]
|
|
for obj in object_tracker.tracked_objects.values()
|
|
# if it has exceeded the stationary threshold
|
|
if obj["motionless_count"] >= detect_config.stationary.threshold
|
|
# and it hasn't disappeared
|
|
and object_tracker.disappeared[obj["id"]] == 0
|
|
# and it doesn't overlap with any current motion boxes when not calibrating
|
|
and not intersects_any(
|
|
obj["box"],
|
|
[] if motion_detector.is_calibrating() else motion_boxes,
|
|
)
|
|
]
|
|
|
|
# get tracked object boxes that aren't stationary
|
|
tracked_object_boxes = [
|
|
(
|
|
# use existing object box for stationary objects
|
|
obj["estimate"]
|
|
if obj["motionless_count"] < detect_config.stationary.threshold
|
|
else obj["box"]
|
|
)
|
|
for obj in object_tracker.tracked_objects.values()
|
|
if obj["id"] not in stationary_object_ids
|
|
]
|
|
object_boxes = tracked_object_boxes + object_tracker.untracked_object_boxes
|
|
|
|
# get consolidated regions for tracked objects
|
|
regions = [
|
|
get_cluster_region(
|
|
frame_shape, region_min_size, candidate, object_boxes
|
|
)
|
|
for candidate in get_cluster_candidates(
|
|
frame_shape, region_min_size, object_boxes
|
|
)
|
|
]
|
|
|
|
# only add in the motion boxes when not calibrating and a ptz is not moving via autotracking
|
|
# ptz_moving_at_frame_time() always returns False for non-autotracking cameras
|
|
if not motion_detector.is_calibrating() and not ptz_moving_at_frame_time(
|
|
frame_time,
|
|
ptz_metrics["ptz_start_time"].value,
|
|
ptz_metrics["ptz_stop_time"].value,
|
|
):
|
|
# find motion boxes that are not inside tracked object regions
|
|
standalone_motion_boxes = [
|
|
b for b in motion_boxes if not inside_any(b, regions)
|
|
]
|
|
|
|
if standalone_motion_boxes:
|
|
motion_clusters = get_cluster_candidates(
|
|
frame_shape,
|
|
region_min_size,
|
|
standalone_motion_boxes,
|
|
)
|
|
motion_regions = [
|
|
get_cluster_region_from_grid(
|
|
frame_shape,
|
|
region_min_size,
|
|
candidate,
|
|
standalone_motion_boxes,
|
|
region_grid,
|
|
)
|
|
for candidate in motion_clusters
|
|
]
|
|
regions += motion_regions
|
|
|
|
# if starting up, get the next startup scan region
|
|
if startup_scan:
|
|
for region in get_startup_regions(
|
|
frame_shape, region_min_size, region_grid
|
|
):
|
|
regions.append(region)
|
|
startup_scan = False
|
|
|
|
# resize regions and detect
|
|
# seed with stationary objects
|
|
detections = [
|
|
(
|
|
obj["label"],
|
|
obj["score"],
|
|
obj["box"],
|
|
obj["area"],
|
|
obj["ratio"],
|
|
obj["region"],
|
|
)
|
|
for obj in object_tracker.tracked_objects.values()
|
|
if obj["id"] in stationary_object_ids
|
|
]
|
|
|
|
for region in regions:
|
|
detections.extend(
|
|
detect(
|
|
detect_config,
|
|
object_detector,
|
|
frame,
|
|
model_config,
|
|
region,
|
|
objects_to_track,
|
|
object_filters,
|
|
)
|
|
)
|
|
|
|
consolidated_detections = reduce_detections(frame_shape, detections)
|
|
|
|
# if detection was run on this frame, consolidate
|
|
if len(regions) > 0:
|
|
tracked_detections = [
|
|
d
|
|
for d in consolidated_detections
|
|
if d[0] not in ALL_ATTRIBUTE_LABELS
|
|
]
|
|
# now that we have refined our detections, we need to track objects
|
|
object_tracker.match_and_update(frame_time, tracked_detections)
|
|
# else, just update the frame times for the stationary objects
|
|
else:
|
|
object_tracker.update_frame_times(frame_time)
|
|
|
|
# group the attribute detections based on what label they apply to
|
|
attribute_detections = {}
|
|
for label, attribute_labels in ATTRIBUTE_LABEL_MAP.items():
|
|
attribute_detections[label] = [
|
|
d for d in consolidated_detections if d[0] in attribute_labels
|
|
]
|
|
|
|
# build detections and add attributes
|
|
detections = {}
|
|
for obj in object_tracker.tracked_objects.values():
|
|
attributes = []
|
|
# if the objects label has associated attribute detections
|
|
if obj["label"] in attribute_detections.keys():
|
|
# add them to attributes if they intersect
|
|
for attribute_detection in attribute_detections[obj["label"]]:
|
|
if box_inside(obj["box"], (attribute_detection[2])):
|
|
attributes.append(
|
|
{
|
|
"label": attribute_detection[0],
|
|
"score": attribute_detection[1],
|
|
"box": attribute_detection[2],
|
|
}
|
|
)
|
|
detections[obj["id"]] = {**obj, "attributes": attributes}
|
|
|
|
# debug object tracking
|
|
if False:
|
|
bgr_frame = cv2.cvtColor(
|
|
frame,
|
|
cv2.COLOR_YUV2BGR_I420,
|
|
)
|
|
object_tracker.debug_draw(bgr_frame, frame_time)
|
|
cv2.imwrite(
|
|
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
|
|
)
|
|
# debug
|
|
if False:
|
|
bgr_frame = cv2.cvtColor(
|
|
frame,
|
|
cv2.COLOR_YUV2BGR_I420,
|
|
)
|
|
|
|
for m_box in motion_boxes:
|
|
cv2.rectangle(
|
|
bgr_frame,
|
|
(m_box[0], m_box[1]),
|
|
(m_box[2], m_box[3]),
|
|
(0, 0, 255),
|
|
2,
|
|
)
|
|
|
|
for b in tracked_object_boxes:
|
|
cv2.rectangle(
|
|
bgr_frame,
|
|
(b[0], b[1]),
|
|
(b[2], b[3]),
|
|
(255, 0, 0),
|
|
2,
|
|
)
|
|
|
|
for obj in object_tracker.tracked_objects.values():
|
|
if obj["frame_time"] == frame_time:
|
|
thickness = 2
|
|
color = model_config.colormap[obj["label"]]
|
|
else:
|
|
thickness = 1
|
|
color = (255, 0, 0)
|
|
|
|
# draw the bounding boxes on the frame
|
|
box = obj["box"]
|
|
|
|
draw_box_with_label(
|
|
bgr_frame,
|
|
box[0],
|
|
box[1],
|
|
box[2],
|
|
box[3],
|
|
obj["label"],
|
|
obj["id"],
|
|
thickness=thickness,
|
|
color=color,
|
|
)
|
|
|
|
for region in regions:
|
|
cv2.rectangle(
|
|
bgr_frame,
|
|
(region[0], region[1]),
|
|
(region[2], region[3]),
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
|
|
cv2.imwrite(
|
|
f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg",
|
|
bgr_frame,
|
|
)
|
|
# add to the queue if not full
|
|
if detected_objects_queue.full():
|
|
frame_manager.delete(f"{camera_name}{frame_time}")
|
|
continue
|
|
else:
|
|
fps_tracker.update()
|
|
fps.value = fps_tracker.eps()
|
|
detected_objects_queue.put(
|
|
(
|
|
camera_name,
|
|
frame_time,
|
|
detections,
|
|
motion_boxes,
|
|
regions,
|
|
)
|
|
)
|
|
detection_fps.value = object_detector.fps.eps()
|
|
frame_manager.close(f"{camera_name}{frame_time}")
|