mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			94 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import os
 | |
| 
 | |
| import numpy as np
 | |
| from pydantic import Field
 | |
| from typing_extensions import Literal
 | |
| 
 | |
| from frigate.detectors.detection_api import DetectionApi
 | |
| from frigate.detectors.detector_config import BaseDetectorConfig
 | |
| 
 | |
| try:
 | |
|     from tflite_runtime.interpreter import Interpreter, load_delegate
 | |
| except ModuleNotFoundError:
 | |
|     from tensorflow.lite.python.interpreter import Interpreter, load_delegate
 | |
| 
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| DETECTOR_KEY = "edgetpu"
 | |
| 
 | |
| 
 | |
| class EdgeTpuDetectorConfig(BaseDetectorConfig):
 | |
|     type: Literal[DETECTOR_KEY]
 | |
|     device: str = Field(default=None, title="Device Type")
 | |
| 
 | |
| 
 | |
| class EdgeTpuTfl(DetectionApi):
 | |
|     type_key = DETECTOR_KEY
 | |
| 
 | |
|     def __init__(self, detector_config: EdgeTpuDetectorConfig):
 | |
|         device_config = {}
 | |
|         if detector_config.device is not None:
 | |
|             device_config = {"device": detector_config.device}
 | |
| 
 | |
|         edge_tpu_delegate = None
 | |
| 
 | |
|         try:
 | |
|             device_type = (
 | |
|                 device_config["device"] if "device" in device_config else "auto"
 | |
|             )
 | |
|             logger.info(f"Attempting to load TPU as {device_type}")
 | |
|             edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
 | |
|             logger.info("TPU found")
 | |
|             self.interpreter = Interpreter(
 | |
|                 model_path=detector_config.model.path,
 | |
|                 experimental_delegates=[edge_tpu_delegate],
 | |
|             )
 | |
|         except ValueError:
 | |
|             _, ext = os.path.splitext(detector_config.model.path)
 | |
| 
 | |
|             if ext and ext != ".tflite":
 | |
|                 logger.error(
 | |
|                     "Incorrect model used with EdgeTPU. Only .tflite models can be used with a Coral EdgeTPU."
 | |
|                 )
 | |
|             else:
 | |
|                 logger.error(
 | |
|                     "No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
 | |
|                 )
 | |
| 
 | |
|             raise
 | |
| 
 | |
|         self.interpreter.allocate_tensors()
 | |
| 
 | |
|         self.tensor_input_details = self.interpreter.get_input_details()
 | |
|         self.tensor_output_details = self.interpreter.get_output_details()
 | |
|         self.model_type = detector_config.model.model_type
 | |
| 
 | |
|     def detect_raw(self, tensor_input):
 | |
|         self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
 | |
|         self.interpreter.invoke()
 | |
| 
 | |
|         boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
 | |
|         class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
 | |
|         scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
 | |
|         count = int(
 | |
|             self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
 | |
|         )
 | |
| 
 | |
|         detections = np.zeros((20, 6), np.float32)
 | |
| 
 | |
|         for i in range(count):
 | |
|             if scores[i] < 0.4 or i == 20:
 | |
|                 break
 | |
|             detections[i] = [
 | |
|                 class_ids[i],
 | |
|                 float(scores[i]),
 | |
|                 boxes[i][0],
 | |
|                 boxes[i][1],
 | |
|                 boxes[i][2],
 | |
|                 boxes[i][3],
 | |
|             ]
 | |
| 
 | |
|         return detections
 |