blakeblackshear.frigate/frigate/embeddings/__init__.py
Nicolas Mowen a2ca18a714
Bug fixes (#14263)
* Simplify loitering logic

* Fix divide by zero

* Add device config for semantic search

* Add docs
2024-10-10 07:09:12 -06:00

95 lines
2.8 KiB
Python

"""SQLite-vec embeddings database."""
import json
import logging
import multiprocessing as mp
import os
import signal
import threading
from types import FrameType
from typing import Optional
from setproctitle import setproctitle
from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.models import Event
from frigate.util.services import listen
from .embeddings import Embeddings
from .maintainer import EmbeddingMaintainer
from .util import ZScoreNormalization
logger = logging.getLogger(__name__)
def manage_embeddings(config: FrigateConfig) -> None:
# Only initialize embeddings if semantic search is enabled
if not config.semantic_search.enabled:
return
stop_event = mp.Event()
def receiveSignal(signalNumber: int, frame: Optional[FrameType]) -> None:
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = "process:embeddings_manager"
setproctitle("frigate.embeddings_manager")
listen()
# Configure Frigate DB
db = SqliteVecQueueDatabase(
config.database.path,
pragmas={
"auto_vacuum": "FULL", # Does not defragment database
"cache_size": -512 * 1000, # 512MB of cache
"synchronous": "NORMAL", # Safe when using WAL https://www.sqlite.org/pragma.html#pragma_synchronous
},
timeout=max(60, 10 * len([c for c in config.cameras.values() if c.enabled])),
load_vec_extension=True,
)
models = [Event]
db.bind(models)
embeddings = Embeddings(config.semantic_search, db)
# Check if we need to re-index events
if config.semantic_search.reindex:
embeddings.reindex()
maintainer = EmbeddingMaintainer(
db,
config,
stop_event,
)
maintainer.start()
class EmbeddingsContext:
def __init__(self, config: FrigateConfig, db: SqliteVecQueueDatabase):
self.embeddings = Embeddings(config.semantic_search, db)
self.thumb_stats = ZScoreNormalization()
self.desc_stats = ZScoreNormalization()
# load stats from disk
try:
with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "r") as f:
data = json.loads(f.read())
self.thumb_stats.from_dict(data["thumb_stats"])
self.desc_stats.from_dict(data["desc_stats"])
except FileNotFoundError:
pass
def save_stats(self):
"""Write the stats to disk as JSON on exit."""
contents = {
"thumb_stats": self.thumb_stats.to_dict(),
"desc_stats": self.desc_stats.to_dict(),
}
with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "w") as f:
json.dump(contents, f)