blakeblackshear.frigate/detect_objects.py
2019-02-10 14:43:21 -06:00

470 lines
19 KiB
Python

import os
import cv2
import imutils
import time
import datetime
import ctypes
import logging
import multiprocessing as mp
import threading
import json
from contextlib import closing
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from flask import Flask, Response, make_response
import paho.mqtt.client as mqtt
RTSP_URL = os.getenv('RTSP_URL')
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
MQTT_HOST = os.getenv('MQTT_HOST')
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
# TODO: make dynamic?
NUM_CLASSES = 90
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
# REGIONS = "400,350,250,50"
REGIONS = os.getenv('REGIONS')
DETECTED_OBJECTS = []
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
score = scores[0, index]
if score > 0.1:
box = boxes[0, index].tolist()
box[0] = (box[0] * region_size) + region_y_offset
box[1] = (box[1] * region_size) + region_x_offset
box[2] = (box[2] * region_size) + region_y_offset
box[3] = (box[3] * region_size) + region_x_offset
objects += [value, scores[0, index]] + box
# only get the first 10 objects
if len(objects) == 60:
break
return objects
class ObjectParser(threading.Thread):
def __init__(self, object_arrays):
threading.Thread.__init__(self)
self._object_arrays = object_arrays
def run(self):
global DETECTED_OBJECTS
while True:
detected_objects = []
for object_array in self._object_arrays:
object_index = 0
while(object_index < 60 and object_array[object_index] > 0):
object_class = object_array[object_index]
detected_objects.append({
'name': str(category_index.get(object_class).get('name')),
'score': object_array[object_index+1],
'ymin': int(object_array[object_index+2]),
'xmin': int(object_array[object_index+3]),
'ymax': int(object_array[object_index+4]),
'xmax': int(object_array[object_index+5])
})
object_index += 6
DETECTED_OBJECTS = detected_objects
time.sleep(0.1)
class MqttPublisher(threading.Thread):
def __init__(self, host, topic_prefix, object_classes, motion_flags):
threading.Thread.__init__(self)
self.client = mqtt.Client()
self.client.will_set(topic_prefix+'/available', payload='offline', qos=1, retain=True)
self.client.connect(host, 1883, 60)
self.client.loop_start()
self.client.publish(topic_prefix+'/available', 'online', retain=True)
self.topic_prefix = topic_prefix
self.object_classes = object_classes
self.motion_flags = motion_flags
def run(self):
global DETECTED_OBJECTS
last_sent_payload = ""
last_motion = ""
while True:
# initialize the payload
payload = {}
for obj in self.object_classes:
payload[obj] = []
# loop over detected objects and populate
# the payload
detected_objects = DETECTED_OBJECTS.copy()
for obj in detected_objects:
if obj['name'] in self.object_classes:
payload[obj['name']].append(obj)
new_payload = json.dumps(payload, sort_keys=True)
if new_payload != last_sent_payload:
last_sent_payload = new_payload
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
motion_status = 'OFF'
if any(obj.value == 1 for obj in self.motion_flags):
motion_status = 'ON'
if motion_status != last_motion:
last_motion = motion_status
self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
time.sleep(0.1)
def main():
# Parse selected regions
regions = []
for region_string in REGIONS.split(':'):
region_parts = region_string.split(',')
regions.append({
'size': int(region_parts[0]),
'x_offset': int(region_parts[1]),
'y_offset': int(region_parts[2]),
'min_object_size': int(region_parts[3]),
# shared value for signaling to the capture process that we are ready for the next frame
# (1 for ready 0 for not ready)
'ready_for_frame': mp.Value('i', 1),
# shared value for motion detection signal (1 for motion 0 for no motion)
'motion_detected': mp.Value('i', 0),
# create shared array for storing 10 detected objects
# note: this must be a double even though the value you are storing
# is a float. otherwise it stops updating the value in shared
# memory. probably something to do with the size of the memory block
'output_array': mp.Array(ctypes.c_double, 6*10)
})
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(RTSP_URL)
ret, frame = video.read()
if ret:
frame_shape = frame.shape
else:
print("Unable to capture video stream")
exit(1)
video.release()
# compute the flattened array length from the array shape
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for storing the full frame image data
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create shared value for storing the frame_time
shared_frame_time = mp.Value('d', 0.0)
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
shared_frame_time, [region['ready_for_frame'] for region in regions], frame_shape))
capture_process.daemon = True
detection_processes = []
for index, region in enumerate(regions):
detection_process = mp.Process(target=process_frames, args=(shared_arr,
region['output_array'],
shared_frame_time,
region['motion_detected'],
frame_shape,
region['size'], region['x_offset'], region['y_offset']))
detection_process.daemon = True
detection_processes.append(detection_process)
motion_processes = []
for index, region in enumerate(regions):
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
shared_frame_time,
region['ready_for_frame'],
region['motion_detected'],
frame_shape,
region['size'], region['x_offset'], region['y_offset'],
region['min_object_size']))
motion_process.daemon = True
motion_processes.append(motion_process)
object_parser = ObjectParser([region['output_array'] for region in regions])
object_parser.start()
mqtt_publisher = MqttPublisher(MQTT_HOST, MQTT_TOPIC_PREFIX,
MQTT_OBJECT_CLASSES.split(','),
[region['motion_detected'] for region in regions])
mqtt_publisher.start()
capture_process.start()
print("capture_process pid ", capture_process.pid)
for detection_process in detection_processes:
detection_process.start()
print("detection_process pid ", detection_process.pid)
for motion_process in motion_processes:
motion_process.start()
print("motion_process pid ", motion_process.pid)
app = Flask(__name__)
@app.route('/')
def index():
# return a multipart response
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
global DETECTED_OBJECTS
while True:
# max out at 5 FPS
time.sleep(0.2)
# make a copy of the current detected objects
detected_objects = DETECTED_OBJECTS.copy()
# make a copy of the current frame
frame = frame_arr.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in detected_objects:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
for region in regions:
color = (255,255,255)
if region['motion_detected'].value == 1:
color = (0,255,0)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
cv2.putText(frame, datetime.datetime.now().strftime("%H:%M:%S"), (1125, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', debug=False)
capture_process.join()
for detection_process in detection_processes:
detection_process.join()
for motion_process in motion_processes:
motion_process.join()
object_parser.join()
mqtt_publisher.join()
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the video capture
video = cv2.VideoCapture(RTSP_URL)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
while True:
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# if the anyone is ready for the next frame decode it
# otherwise skip this frame and move onto the next one
if any(flag.value == 1 for flag in ready_for_frame_flags):
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
arr[:] = frame
shared_frame_time.value = frame_time.timestamp()
# signal to the detection_processes by setting the shared_frame_time
for flag in ready_for_frame_flags:
flag.value = 0
else:
# sleep a little to reduce CPU usage
time.sleep(0.1)
video.release()
# do the actual object detection
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
no_frames_available = -1
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# if there is no motion detected
if shared_motion.value == 0:
time.sleep(0.1)
continue
# if there isnt a new frame ready for processing
if shared_frame_time.value == frame_time:
# save the first time there were no frames available
if no_frames_available == -1:
no_frames_available = now
# if there havent been any frames available in 30 seconds,
# sleep to avoid using so much cpu if the camera feed is down
if no_frames_available > 0 and (now - no_frames_available) > 30:
time.sleep(1)
print("sleeping because no frames have been available in a while")
else:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.1)
continue
# we got a valid frame, so reset the timer
no_frames_available = -1
# if the frame is more than 0.5 second old, ignore it
if (now - shared_frame_time.value) > 0.5:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.1)
continue
# make a copy of the cropped frame
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# do the object detection
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
# copy the detected objects to the output array, filling the array when needed
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
# do the actual object detection
def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
no_frames_available = -1
avg_frame = None
last_motion = -1
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# if it has been 30 seconds since the last motion, clear the flag
if last_motion > 0 and (now - last_motion) > 30:
last_motion = -1
shared_motion.value = 0
# if there isnt a frame ready for processing
if shared_frame_time.value == frame_time:
# save the first time there were no frames available
if no_frames_available == -1:
no_frames_available = now
# if there havent been any frames available in 30 seconds,
# sleep to avoid using so much cpu if the camera feed is down
if no_frames_available > 0 and (now - no_frames_available) > 30:
time.sleep(1)
print("sleeping because no frames have been available in a while")
else:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.1)
if ready_for_frame.value == 0:
ready_for_frame.value = 1
continue
# we got a valid frame, so reset the timer
no_frames_available = -1
# if the frame is more than 0.5 second old, discard it
if (now - shared_frame_time.value) > 0.5:
# signal that we need a new frame
ready_for_frame.value = 1
# rest a little bit to avoid maxing out the CPU
time.sleep(0.1)
continue
# make a copy of the cropped frame
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
frame_time = shared_frame_time.value
# signal that the frame has been used so a new one will be ready
ready_for_frame.value = 1
# convert to grayscale
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
# apply gaussian blur
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if avg_frame is None:
avg_frame = gray.copy().astype("float")
continue
# look at the delta from the avg_frame
cv2.accumulateWeighted(gray, avg_frame, 0.5)
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# if the contour is big enough report motion
if cv2.contourArea(c) > min_motion_area:
last_motion = now
shared_motion.value = 1
break
if __name__ == '__main__':
mp.freeze_support()
main()