blakeblackshear.frigate/frigate/detectors/plugins/rocm.py
2024-02-17 16:01:50 -06:00

144 lines
5.2 KiB
Python

import ctypes
import glob
import logging
import os
import subprocess
import sys
import numpy as np
from pydantic import Field
from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.detectors.util import preprocess, yolov8_postprocess
logger = logging.getLogger(__name__)
DETECTOR_KEY = "rocm"
def detect_gfx_version():
return subprocess.getoutput(
"unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'"
)
def auto_override_gfx_version():
# If environment variable already in place, do not override
gfx_version = detect_gfx_version()
old_override = os.getenv("HSA_OVERRIDE_GFX_VERSION")
if old_override not in (None, ""):
logger.warning(
f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!"
)
return old_override
mapping = {
"gfx90c": "9.0.0",
"gfx1031": "10.3.0",
"gfx1103": "11.0.0",
}
override = mapping.get(gfx_version)
if override is not None:
logger.warning(
f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}"
)
os.putenv("HSA_OVERRIDE_GFX_VERSION", override)
return override
return ""
class ROCmDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
conserve_cpu: bool = Field(
default=True,
title="Conserve CPU at the expense of latency (and reduced max throughput)",
)
auto_override_gfx: bool = Field(
default=True, title="Automatically detect and override gfx version"
)
class ROCmDetector(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: ROCmDetectorConfig):
if detector_config.auto_override_gfx:
auto_override_gfx_version()
try:
sys.path.append("/opt/rocm/lib")
import migraphx
logger.info("AMD/ROCm: loaded migraphx module")
except ModuleNotFoundError:
logger.error("AMD/ROCm: module loading failed, missing ROCm environment?")
raise
if detector_config.conserve_cpu:
logger.info("AMD/ROCm: switching HIP to blocking mode to conserve CPU")
ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4)
assert (
detector_config.model.model_type == "yolov8"
), "AMD/ROCm: detector_config.model.model_type: only yolov8 supported"
assert (
detector_config.model.input_tensor == "nhwc"
), "AMD/ROCm: detector_config.model.input_tensor: only nhwc supported"
if detector_config.model.input_pixel_format != "rgb":
logger.warn(
"AMD/ROCm: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!"
)
assert detector_config.model.path is not None, (
"No model.path configured, please configure model.path and model.labelmap_path; some suggestions: "
+ ", ".join(glob.glob("/config/model_cache/yolov8/*.onnx"))
+ " and "
+ ", ".join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
)
path = detector_config.model.path
mxr_path = os.path.splitext(path)[0] + ".mxr"
if path.endswith(".mxr"):
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
self.model = migraphx.load(mxr_path)
elif os.path.exists(mxr_path):
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
self.model = migraphx.load(mxr_path)
else:
logger.info(f"AMD/ROCm: loading model from {path}")
if path.endswith(".onnx"):
self.model = migraphx.parse_onnx(path)
elif (
path.endswith(".tf")
or path.endswith(".tf2")
or path.endswith(".tflite")
):
# untested
self.model = migraphx.parse_tf(path)
else:
raise Exception(f"AMD/ROCm: unknown model format {path}")
logger.info("AMD/ROCm: compiling the model")
self.model.compile(
migraphx.get_target("gpu"), offload_copy=True, fast_math=True
)
logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}")
os.makedirs("/config/model_cache/rocm", exist_ok=True)
migraphx.save(self.model, mxr_path)
logger.info("AMD/ROCm: model loaded")
def detect_raw(self, tensor_input):
model_input_name = self.model.get_parameter_names()[0]
model_input_shape = tuple(
self.model.get_parameter_shapes()[model_input_name].lens()
)
tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
detector_result = self.model.run({model_input_name: tensor_input})[0]
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
tensor_output = np.ctypeslib.as_array(
addr, shape=detector_result.get_shape().lens()
)
return yolov8_postprocess(model_input_shape, tensor_output)