blakeblackshear.frigate/frigate/video.py
Nicolas Mowen ec4d79eafc
Fix bug in intersection logic (#6780)
* Fix bug in intersection logic

* Fix isort

* Remove unrelated test

* Formatting

* Fix type in test
2023-06-12 17:38:22 -05:00

991 lines
32 KiB
Python
Executable File

import datetime
import logging
import math
import multiprocessing as mp
import os
import queue
import signal
import subprocess as sp
import threading
import time
from collections import defaultdict
import cv2
import numpy as np
from setproctitle import setproctitle
from frigate.config import CameraConfig, DetectConfig, PixelFormatEnum
from frigate.const import CACHE_DIR
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
from frigate.object_detection import RemoteObjectDetector
from frigate.track import ObjectTracker
from frigate.track.norfair_tracker import NorfairTracker
from frigate.util import (
EventsPerSecond,
FrameManager,
SharedMemoryFrameManager,
area,
calculate_region,
draw_box_with_label,
intersection,
intersection_over_union,
listen,
yuv_region_2_bgr,
yuv_region_2_rgb,
yuv_region_2_yuv,
)
logger = logging.getLogger(__name__)
def filtered(obj, objects_to_track, object_filters):
object_name = obj[0]
object_score = obj[1]
object_box = obj[2]
object_area = obj[3]
object_ratio = obj[4]
if object_name not in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > object_area:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < object_area:
return True
# if the score is lower than the min_score, skip
if obj_settings.min_score > object_score:
return True
# if the object is not proportionally wide enough
if obj_settings.min_ratio > object_ratio:
return True
# if the object is proportionally too wide
if obj_settings.max_ratio < object_ratio:
return True
if obj_settings.mask is not None:
# compute the coordinates of the object and make sure
# the location isn't outside the bounds of the image (can happen from rounding)
object_xmin = object_box[0]
object_xmax = object_box[2]
object_ymax = object_box[3]
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
x_location = min(
int((object_xmax + object_xmin) / 2.0),
len(obj_settings.mask[0]) - 1,
)
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
return False
def create_tensor_input(frame, model_config, region):
if model_config.input_pixel_format == PixelFormatEnum.rgb:
cropped_frame = yuv_region_2_rgb(frame, region)
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
cropped_frame = yuv_region_2_bgr(frame, region)
else:
cropped_frame = yuv_region_2_yuv(frame, region)
# Resize if needed
if cropped_frame.shape != (model_config.height, model_config.width, 3):
cropped_frame = cv2.resize(
cropped_frame,
dsize=(model_config.width, model_config.height),
interpolation=cv2.INTER_LINEAR,
)
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def stop_ffmpeg(ffmpeg_process, logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
logger.info("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
logger.info("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
def start_or_restart_ffmpeg(
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
):
if ffmpeg_process is not None:
stop_ffmpeg(ffmpeg_process, logger)
if frame_size is None:
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.DEVNULL,
stderr=logpipe,
stdin=sp.DEVNULL,
start_new_session=True,
)
else:
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.PIPE,
stderr=logpipe,
stdin=sp.DEVNULL,
bufsize=frame_size * 10,
start_new_session=True,
)
return process
def capture_frames(
ffmpeg_process,
camera_name,
frame_shape,
frame_manager: FrameManager,
frame_queue,
fps: mp.Value,
skipped_fps: mp.Value,
current_frame: mp.Value,
stop_event: mp.Event,
):
frame_size = frame_shape[0] * frame_shape[1]
frame_rate = EventsPerSecond()
frame_rate.start()
skipped_eps = EventsPerSecond()
skipped_eps.start()
while True:
fps.value = frame_rate.eps()
skipped_eps.eps()
current_frame.value = datetime.datetime.now().timestamp()
frame_name = f"{camera_name}{current_frame.value}"
frame_buffer = frame_manager.create(frame_name, frame_size)
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception:
# shutdown has been initiated
if stop_event.is_set():
break
logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.")
if ffmpeg_process.poll() is not None:
logger.error(
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
)
frame_manager.delete(frame_name)
break
continue
frame_rate.update()
# if the queue is full, skip this frame
if frame_queue.full():
skipped_eps.update()
frame_manager.delete(frame_name)
continue
# close the frame
frame_manager.close(frame_name)
# add to the queue
frame_queue.put(current_frame.value)
class CameraWatchdog(threading.Thread):
def __init__(
self,
camera_name,
config: CameraConfig,
frame_queue,
camera_fps,
ffmpeg_pid,
stop_event,
):
threading.Thread.__init__(self)
self.logger = logging.getLogger(f"watchdog.{camera_name}")
self.camera_name = camera_name
self.config = config
self.capture_thread = None
self.ffmpeg_detect_process = None
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect")
self.ffmpeg_other_processes: list[dict[str, any]] = []
self.camera_fps = camera_fps
self.ffmpeg_pid = ffmpeg_pid
self.frame_queue = frame_queue
self.frame_shape = self.config.frame_shape_yuv
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
self.stop_event = stop_event
def run(self):
self.start_ffmpeg_detect()
for c in self.config.ffmpeg_cmds:
if "detect" in c["roles"]:
continue
logpipe = LogPipe(
f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}"
)
self.ffmpeg_other_processes.append(
{
"cmd": c["cmd"],
"roles": c["roles"],
"logpipe": logpipe,
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
}
)
time.sleep(10)
while not self.stop_event.wait(10):
now = datetime.datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.camera_fps.value = 0
self.logger.error(
f"Ffmpeg process crashed unexpectedly for {self.camera_name}."
)
self.logger.error(
"The following ffmpeg logs include the last 100 lines prior to exit."
)
self.logpipe.dump()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.camera_fps.value = 0
self.logger.info(
f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..."
)
self.ffmpeg_detect_process.terminate()
try:
self.logger.info("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_detect_process.communicate(timeout=30)
except sp.TimeoutExpired:
self.logger.info("FFmpeg did not exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
elif self.camera_fps.value >= (self.config.detect.fps + 10):
self.camera_fps.value = 0
self.logger.info(
f"{self.camera_name} exceeded fps limit. Exiting ffmpeg..."
)
self.ffmpeg_detect_process.terminate()
try:
self.logger.info("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_detect_process.communicate(timeout=30)
except sp.TimeoutExpired:
self.logger.info("FFmpeg did not exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
for p in self.ffmpeg_other_processes:
poll = p["process"].poll()
if self.config.record.enabled and "record" in p["roles"]:
latest_segment_time = self.get_latest_segment_timestamp(
p.get(
"latest_segment_time", datetime.datetime.now().timestamp()
)
)
if datetime.datetime.now().timestamp() > (
latest_segment_time + 120
):
self.logger.error(
f"No new recording segments were created for {self.camera_name} in the last 120s. restarting the ffmpeg record process..."
)
p["process"] = start_or_restart_ffmpeg(
p["cmd"],
self.logger,
p["logpipe"],
ffmpeg_process=p["process"],
)
continue
else:
p["latest_segment_time"] = latest_segment_time
if poll is None:
continue
p["logpipe"].dump()
p["process"] = start_or_restart_ffmpeg(
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
)
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p["process"], self.logger)
p["logpipe"].close()
self.logpipe.close()
def start_ffmpeg_detect(self):
ffmpeg_cmd = [
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
)
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
self.capture_thread = CameraCapture(
self.camera_name,
self.ffmpeg_detect_process,
self.frame_shape,
self.frame_queue,
self.camera_fps,
self.stop_event,
)
self.capture_thread.start()
def get_latest_segment_timestamp(self, latest_timestamp) -> int:
"""Checks if ffmpeg is still writing recording segments to cache."""
cache_files = sorted(
[
d
for d in os.listdir(CACHE_DIR)
if os.path.isfile(os.path.join(CACHE_DIR, d))
and d.endswith(".mp4")
and not d.startswith("clip_")
]
)
newest_segment_timestamp = latest_timestamp
for file in cache_files:
if self.camera_name in file:
basename = os.path.splitext(file)[0]
_, date = basename.rsplit("-", maxsplit=1)
ts = datetime.datetime.strptime(date, "%Y%m%d%H%M%S").timestamp()
if ts > newest_segment_timestamp:
newest_segment_timestamp = ts
return newest_segment_timestamp
class CameraCapture(threading.Thread):
def __init__(
self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps, stop_event
):
threading.Thread.__init__(self)
self.name = f"capture:{camera_name}"
self.camera_name = camera_name
self.frame_shape = frame_shape
self.frame_queue = frame_queue
self.fps = fps
self.stop_event = stop_event
self.skipped_fps = EventsPerSecond()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value("d", 0.0)
self.last_frame = 0
def run(self):
self.skipped_fps.start()
capture_frames(
self.ffmpeg_process,
self.camera_name,
self.frame_shape,
self.frame_manager,
self.frame_queue,
self.fps,
self.skipped_fps,
self.current_frame,
self.stop_event,
)
def capture_camera(name, config: CameraConfig, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"capture:{name}"
setproctitle(f"frigate.capture:{name}")
frame_queue = process_info["frame_queue"]
camera_watchdog = CameraWatchdog(
name,
config,
frame_queue,
process_info["camera_fps"],
process_info["ffmpeg_pid"],
stop_event,
)
camera_watchdog.start()
camera_watchdog.join()
def track_camera(
name,
config: CameraConfig,
model_config,
labelmap,
detection_queue,
result_connection,
detected_objects_queue,
process_info,
):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"process:{name}"
setproctitle(f"frigate.process:{name}")
listen()
frame_queue = process_info["frame_queue"]
detection_enabled = process_info["detection_enabled"]
motion_enabled = process_info["motion_enabled"]
improve_contrast_enabled = process_info["improve_contrast_enabled"]
motion_threshold = process_info["motion_threshold"]
motion_contour_area = process_info["motion_contour_area"]
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
motion_detector = ImprovedMotionDetector(
frame_shape,
config.motion,
config.detect.fps,
improve_contrast_enabled,
motion_threshold,
motion_contour_area,
)
object_detector = RemoteObjectDetector(
name, labelmap, detection_queue, result_connection, model_config, stop_event
)
object_tracker = NorfairTracker(config.detect)
frame_manager = SharedMemoryFrameManager()
process_frames(
name,
frame_queue,
frame_shape,
model_config,
config.detect,
frame_manager,
motion_detector,
object_detector,
object_tracker,
detected_objects_queue,
process_info,
objects_to_track,
object_filters,
detection_enabled,
motion_enabled,
stop_event,
)
logger.info(f"{name}: exiting subprocess")
def box_overlaps(b1, b2):
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
return False
return True
def box_inside(b1, b2):
# check if b2 is inside b1
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
return True
return False
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
for box in boxes:
matched = 0
for cluster in clusters:
if intersection_over_union(box, cluster) > iou_threshold:
matched = 1
cluster[0] = min(cluster[0], box[0])
cluster[1] = min(cluster[1], box[1])
cluster[2] = max(cluster[2], box[2])
cluster[3] = max(cluster[3], box[3])
if not matched:
clusters.append(list(box))
return [tuple(c) for c in clusters]
def intersects_any(box_a, boxes):
for box in boxes:
if box_overlaps(box_a, box):
return True
return False
def detect(
detect_config: DetectConfig,
object_detector,
frame,
model_config,
region,
objects_to_track,
object_filters,
):
tensor_input = create_tensor_input(frame, model_config, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2] - region[0]
x_min = int(max(0, (box[1] * size) + region[0]))
y_min = int(max(0, (box[0] * size) + region[1]))
x_max = int(min(detect_config.width - 1, (box[3] * size) + region[0]))
y_max = int(min(detect_config.height - 1, (box[2] * size) + region[1]))
# ignore objects that were detected outside the frame
if (x_min >= detect_config.width - 1) or (y_min >= detect_config.height - 1):
continue
width = x_max - x_min
height = y_max - y_min
area = width * height
ratio = width / height
det = (
d[0],
d[1],
(x_min, y_min, x_max, y_max),
area,
ratio,
region,
)
# apply object filters
if filtered(det, objects_to_track, object_filters):
continue
detections.append(det)
return detections
def get_cluster_boundary(box, min_region):
# compute the max region size for the current box (box is 10% of region)
box_width = box[2] - box[0]
box_height = box[3] - box[1]
max_region_area = abs(box_width * box_height) / 0.1
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
return [
int(centroid[0] - max_x_dist),
int(centroid[1] - max_y_dist),
int(centroid[0] + max_x_dist),
int(centroid[1] + max_y_dist),
]
def get_cluster_candidates(frame_shape, min_region, boxes):
# and create a cluster of other boxes using it's max region size
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
# determined by the max_region size minus half the box + 20%
# TODO: see if we can do this with numpy
cluster_candidates = []
used_boxes = []
# loop over each box
for current_index, b in enumerate(boxes):
if current_index in used_boxes:
continue
cluster = [current_index]
used_boxes.append(current_index)
cluster_boundary = get_cluster_boundary(b, min_region)
# find all other boxes that fit inside the boundary
for compare_index, compare_box in enumerate(boxes):
if compare_index in used_boxes:
continue
# if the box is not inside the potential cluster area, cluster them
if not box_inside(cluster_boundary, compare_box):
continue
# get the region if you were to add this box to the cluster
potential_cluster = cluster + [compare_index]
cluster_region = get_cluster_region(
frame_shape, min_region, potential_cluster, boxes
)
# if region could be smaller and either box would be too small
# for the resulting region, dont cluster
should_cluster = True
if (cluster_region[2] - cluster_region[0]) > min_region:
for b in potential_cluster:
box = boxes[b]
# boxes should be more than 5% of the area of the region
if area(box) / area(cluster_region) < 0.05:
should_cluster = False
break
if should_cluster:
cluster.append(compare_index)
used_boxes.append(compare_index)
cluster_candidates.append(cluster)
# return the unique clusters only
unique = {tuple(sorted(c)) for c in cluster_candidates}
return [list(tup) for tup in unique]
def get_cluster_region(frame_shape, min_region, cluster, boxes):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return calculate_region(
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
)
def get_consolidated_object_detections(detected_object_groups):
"""Drop detections that overlap too much"""
consolidated_detections = []
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
intersect_box = intersection(current_detection, to_check)
# if 90% of smaller detection is inside of another detection, consolidate
if (
intersect_box is not None
and area(intersect_box) / area(current_detection) > 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(sorted_by_area[current_detection_idx])
return consolidated_detections
def process_frames(
camera_name: str,
frame_queue: mp.Queue,
frame_shape,
model_config,
detect_config: DetectConfig,
frame_manager: FrameManager,
motion_detector: MotionDetector,
object_detector: RemoteObjectDetector,
object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue,
process_info: dict,
objects_to_track: list[str],
object_filters,
detection_enabled: mp.Value,
motion_enabled: mp.Value,
stop_event,
exit_on_empty: bool = False,
):
fps = process_info["process_fps"]
detection_fps = process_info["detection_fps"]
current_frame_time = process_info["detection_frame"]
fps_tracker = EventsPerSecond()
fps_tracker.start()
startup_scan_counter = 0
region_min_size = int(max(model_config.height, model_config.width) / 2)
while not stop_event.is_set():
if exit_on_empty and frame_queue.empty():
logger.info("Exiting track_objects...")
break
try:
frame_time = frame_queue.get(True, 1)
except queue.Empty:
continue
current_frame_time.value = frame_time
frame = frame_manager.get(
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
)
if frame is None:
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
# look for motion if enabled
motion_boxes = motion_detector.detect(frame) if motion_enabled.value else []
regions = []
# if detection is disabled
if not detection_enabled.value:
object_tracker.match_and_update(frame_time, [])
else:
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if there hasn't been motion for 10 frames
if obj["motionless_count"] >= 10
# and it isn't due for a periodic check
and (
detect_config.stationary.interval == 0
or obj["motionless_count"] % detect_config.stationary.interval != 0
)
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes
and not intersects_any(obj["box"], motion_boxes)
]
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["estimate"]
for obj in object_tracker.tracked_objects.values()
if obj["id"] not in stationary_object_ids
]
combined_boxes = motion_boxes + tracked_object_boxes
cluster_candidates = get_cluster_candidates(
frame_shape, region_min_size, combined_boxes
)
regions = [
get_cluster_region(
frame_shape, region_min_size, candidate, combined_boxes
)
for candidate in cluster_candidates
]
# if starting up, get the next startup scan region
if startup_scan_counter < 9:
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
ymax = int(frame_shape[0] / 3 + ymin)
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
xmax = int(frame_shape[1] / 3 + xmin)
regions.append(
calculate_region(
frame_shape,
xmin,
ymin,
xmax,
ymax,
region_min_size,
multiplier=1.2,
)
)
startup_scan_counter += 1
# resize regions and detect
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["ratio"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
for region in regions:
detections.extend(
detect(
detect_config,
object_detector,
frame,
model_config,
region,
objects_to_track,
object_filters,
)
)
#########
# merge objects
#########
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# add objects
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
selected_objects.append(obj)
# set the detections list to only include top objects
detections = selected_objects
# if detection was run on this frame, consolidate
if len(regions) > 0:
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
consolidated_detections = get_consolidated_object_detections(
detected_object_groups
)
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, consolidated_detections)
# else, just update the frame times for the stationary objects
else:
object_tracker.update_frame_times(frame_time)
# debug object tracking
if False:
bgr_frame = cv2.cvtColor(
frame,
cv2.COLOR_YUV2BGR_I420,
)
object_tracker.debug_draw(bgr_frame, frame_time)
cv2.imwrite(
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
)
# debug
if False:
bgr_frame = cv2.cvtColor(
frame,
cv2.COLOR_YUV2BGR_I420,
)
for m_box in motion_boxes:
cv2.rectangle(
bgr_frame,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
for b in tracked_object_boxes:
cv2.rectangle(
bgr_frame,
(b[0], b[1]),
(b[2], b[3]),
(255, 0, 0),
2,
)
for obj in object_tracker.tracked_objects.values():
if obj["frame_time"] == frame_time:
thickness = 2
color = model_config.colormap[obj["label"]]
else:
thickness = 1
color = (255, 0, 0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
bgr_frame,
box[0],
box[1],
box[2],
box[3],
obj["label"],
obj["id"],
thickness=thickness,
color=color,
)
for region in regions:
cv2.rectangle(
bgr_frame,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
cv2.imwrite(
f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg",
bgr_frame,
)
# add to the queue if not full
if detected_objects_queue.full():
frame_manager.delete(f"{camera_name}{frame_time}")
continue
else:
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put(
(
camera_name,
frame_time,
object_tracker.tracked_objects,
motion_boxes,
regions,
)
)
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")